Freigeben über


Unterstützte Programmiersprachen für Azure OpenAI

Hinweis

Dieses Dokument bezieht sich auf das Microsoft Foundry(klassische) Portal.

🔄 Wechseln Sie zur Microsoft Foundry-Dokumentation (neu), wenn Sie das neue Portal verwenden.

Hinweis

Dieses Dokument bezieht sich auf das Microsoft Foundry (neue) Portal.

Quellcode | Paket (NuGet)

Unterstützung der Azure OpenAI-API-Version

Installation

dotnet add package OpenAI

Authentifizierung

Ein sicherer, schlüsselloser Authentifizierungsansatz besteht darin, Microsoft Entra ID (früher Azure Active Directory) über die Azure Identity-Bibliothek zu verwenden. So verwenden Sie die Bibliothek:

dotnet add package Azure.Identity

Verwenden Sie den gewünschten Anmeldeinformationstyp aus der Bibliothek. Beispiel: DefaultAzureCredential:

using Azure.Identity;
using OpenAI;
using OpenAI.Chat;
using System.ClientModel.Primitives;

#pragma warning disable OPENAI001

BearerTokenPolicy tokenPolicy = new(
    new DefaultAzureCredential(),
    "https://cognitiveservices.azure.com/.default");

ChatClient client = new(
    model: "gpt-4.1-nano",
    authenticationPolicy: tokenPolicy,
    options: new OpenAIClientOptions() { 
    
        Endpoint = new Uri("https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1")
   }
);

ChatCompletion completion = client.CompleteChat("Tell me about the bitter lesson.'");

Console.WriteLine($"[ASSISTANT]: {completion.Content[0].Text}");

Weitere Informationen zur schlüssellosen Azure OpenAI-Authentifizierung finden Sie im Schnellstartartikel „Erste Schritte mit dem Azure OpenAI-Sicherheitsbaustein“.

Chat

Beispiel einer Chatvervollständigungsanforderung an ein Begründungsmodell.

using OpenAI;
using OpenAI.Chat;
using System.ClientModel.Primitives;

#pragma warning disable OPENAI001 //currently required for token based authentication

BearerTokenPolicy tokenPolicy = new(
    new DefaultAzureCredential(),
    "https://cognitiveservices.azure.com/.default");

ChatClient client = new(
    model: "o4-mini",
    authenticationPolicy: tokenPolicy,
    options: new OpenAIClientOptions()
    {

        Endpoint = new Uri("https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1")
    }
);

ChatCompletionOptions options = new ChatCompletionOptions
{
    ReasoningEffortLevel = ChatReasoningEffortLevel.Low,
    MaxOutputTokenCount = 100000
};

ChatCompletion completion = client.CompleteChat(
         new DeveloperChatMessage("You are a helpful assistant"),
         new UserChatMessage("Tell me about the bitter lesson")
    );

Console.WriteLine($"[ASSISTANT]: {completion.Content[0].Text}");

Einbettungen

using OpenAI;
using OpenAI.Embeddings;
using System.ClientModel;

string apiKey = Environment.GetEnvironmentVariable("AZURE_OPENAI_API_KEY")
    ?? throw new InvalidOperationException("AZURE_OPENAI_API_KEY environment variable is not set");

EmbeddingClient client = new(
    "text-embedding-3-large",
    credential: new ApiKeyCredential(apiKey),
    options: new OpenAIClientOptions()
    {
        Endpoint = new Uri("https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1")
    }
);

string input = "This is a test";

OpenAIEmbedding embedding = client.GenerateEmbedding(input);
ReadOnlyMemory<float> vector = embedding.ToFloats();
Console.WriteLine($"Embeddings: [{string.Join(", ", vector.ToArray())}]");

Antwort-API

using OpenAI;
using OpenAI.Responses;
using System.ClientModel.Primitives;
using Azure.Identity;

#pragma warning disable OPENAI001 //currently required for token based authentication

BearerTokenPolicy tokenPolicy = new(
    new DefaultAzureCredential(),
    "https://cognitiveservices.azure.com/.default");

OpenAIResponseClient client = new(
    model: "o4-mini",
    authenticationPolicy: tokenPolicy,
    options: new OpenAIClientOptions()
    {
        Endpoint = new Uri("https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1")
    }
);

OpenAIResponse response = await client.CreateResponseAsync(
    userInputText: "What's the optimal strategy to win at poker?",
    new ResponseCreationOptions()
    {
        ReasoningOptions = new ResponseReasoningOptions()
        {
            ReasoningEffortLevel = ResponseReasoningEffortLevel.High,
        },
    });

Console.WriteLine(response.GetOutputText());

Streamen

using OpenAI;
using OpenAI.Responses;
using System.ClientModel.Primitives;
using Azure.Identity;

#pragma warning disable OPENAI001 //currently required for token based authentication

BearerTokenPolicy tokenPolicy = new(
    new DefaultAzureCredential(),
    "https://cognitiveservices.azure.com/.default");

#pragma warning disable OPENAI001

OpenAIResponseClient client = new(
    model: "o4-mini",
    authenticationPolicy: tokenPolicy,
    options: new OpenAIClientOptions()
    {
        Endpoint = new Uri("https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1")
    }
);


await foreach (StreamingResponseUpdate update
    in client.CreateResponseStreamingAsync(
        userInputText: "What's the optimal strategy to win at poker?",
        new ResponseCreationOptions()
        {
            ReasoningOptions = new ResponseReasoningOptions()
            {
                ReasoningEffortLevel = ResponseReasoningEffortLevel.High,
            },
        }))
{
    if (update is StreamingResponseOutputItemAddedUpdate itemUpdate
        && itemUpdate.Item is ReasoningResponseItem reasoningItem)
    {
        Console.WriteLine($"[Reasoning] ({reasoningItem.Status})");
    }
    else if (update is StreamingResponseOutputTextDeltaUpdate delta)
    {
        Console.Write(delta.Delta);
    }
}

MCP-Server

using OpenAI;
using OpenAI.Responses;
using System.ClientModel.Primitives;
using Azure.Identity;

#pragma warning disable OPENAI001 //currently required for token based authentication

BearerTokenPolicy tokenPolicy = new(
    new DefaultAzureCredential(),
    "https://cognitiveservices.azure.com/.default");

OpenAIResponseClient client = new(
    model: "o4-mini",
    authenticationPolicy: tokenPolicy,
    options: new OpenAIClientOptions()
    {
        Endpoint = new Uri("https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1")
    }
);

ResponseCreationOptions options = new();
options.Tools.Add(ResponseTool.CreateMcpTool(
    serverLabel: "microsoft_learn",
    serverUri: new Uri("https://learn.microsoft.com/api/mcp"),
    toolCallApprovalPolicy: new McpToolCallApprovalPolicy(GlobalMcpToolCallApprovalPolicy.NeverRequireApproval)
));

OpenAIResponse response = (OpenAIResponse)client.CreateResponse([
    ResponseItem.CreateUserMessageItem([
        ResponseContentPart.CreateInputTextPart("Search for information about Azure Functions")
    ])
], options);

Console.WriteLine(response.GetOutputText());

Fehlerbehandlung

Fehlercodes

Statuscode Fehlertyp
400 Bad Request Error
401 Authentication Error
403 Permission Denied Error
404 Not Found Error
422 Unprocessable Entity Error
429 Rate Limit Error
500 Internal Server Error
503 Service Unavailable
504 Gateway Timeout

Wiederholungsversuche

Die Clientklassen wiederholen automatisch die folgenden Fehler bis zu drei weitere Male mit exponentiellem Backoff:

  • 408 Anforderungstimeout
  • 429 – Zu viele Anforderungen
  • 500: Interner Serverfehler
  • 502 Ungültiges Gateway
  • 503 Dienst nicht verfügbar
  • 504 Gateway-Timeout

Quellcode | Paket (pkg.go.dev) | REST API-Referenzdokumentation | Paketreferenzdokumentation

Unterstützung der Azure OpenAI-API-Version

Installation

Installieren Sie die Module openai und azidentity mit Go Get:

go get -u 'github.com/openai/openai-go'

# optional
go get github.com/Azure/azure-sdk-for-go/sdk/azidentity

Authentifizierung

Das Azidentity-Modul wird für die Microsoft Entra ID-Authentifizierung mit Azure OpenAI verwendet.

package main

import (
	"context"
	"fmt"

	"github.com/Azure/azure-sdk-for-go/sdk/azidentity"
	"github.com/openai/openai-go/v3"
	"github.com/openai/openai-go/v3/azure"
	"github.com/openai/openai-go/v3/option"
)

func main() {
	// Create an Azure credential
	tokenCredential, err := azidentity.NewDefaultAzureCredential(nil)
	if err != nil {
		panic(fmt.Sprintf("Failed to create credential: %v", err))
	}

	// Create a client with Azure OpenAI endpoint and token credential
	client := openai.NewClient(
		option.WithBaseURL("https://YOUR-RESOURCE_NAME.openai.azure.com/openai/v1/"),
		azure.WithTokenCredential(tokenCredential),
	)

	// Make a completion request
	chatCompletion, err := client.Chat.Completions.New(context.TODO(), openai.ChatCompletionNewParams{
		Messages: []openai.ChatCompletionMessageParamUnion{
			openai.UserMessage("Explain what the bitter lesson is?"),
		},
		Model: "o4-mini", // Use your deployed model name on Azure
	})
	if err != nil {
		panic(err.Error())
	}

	fmt.Println(chatCompletion.Choices[0].Message.Content)
}

Weitere Informationen zur schlüssellosen Azure OpenAI-Authentifizierung finden Sie unter Verwenden von Azure OpenAI ohne Schlüssel.

Einbettungen

package main

import (
	"context"
	"fmt"
	"os"

	"github.com/openai/openai-go/v3"
	"github.com/openai/openai-go/v3/option"
)

func main() {
	// Get API key from environment variable
	apiKey := os.Getenv("AZURE_OPENAI_API_KEY")
	if apiKey == "" {
		panic("AZURE_OPENAI_API_KEY environment variable is not set")
	}

	// Create a client with Azure OpenAI endpoint and API key
	client := openai.NewClient(
		option.WithBaseURL("https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/"),
		option.WithAPIKey(apiKey),
	)

	ctx := context.Background()
	text := "The attention mechanism revolutionized natural language processing"

	// Make an embedding request
	embedding, err := client.Embeddings.New(ctx, openai.EmbeddingNewParams{
		Input: openai.EmbeddingNewParamsInputUnion{OfString: openai.String(text)},
		Model: "text-embedding-3-small", // Use your deployed model name on Azure
	})
	if err != nil {
		panic(err.Error())
	}

	// Print embedding information
	fmt.Printf("Model: %s\n", embedding.Model)
	fmt.Printf("Number of embeddings: %d\n", len(embedding.Data))
	fmt.Printf("Embedding dimensions: %d\n", len(embedding.Data[0].Embedding))
	fmt.Printf("Usage - Prompt tokens: %d, Total tokens: %d\n", embedding.Usage.PromptTokens, embedding.Usage.TotalTokens)
	
	// Print first few values of the embedding vector
	fmt.Printf("First 10 embedding values: %v\n", embedding.Data[0].Embedding[:10])
}

Antworten

package main

import (
	"context"

	"github.com/Azure/azure-sdk-for-go/sdk/azidentity"
	"github.com/openai/openai-go/v3"
	"github.com/openai/openai-go/v3/azure"
	"github.com/openai/openai-go/v3/option"
	"github.com/openai/openai-go/v3/responses"
)

func main() {
	// Create Azure token credential
	tokenCredential, err := azidentity.NewDefaultAzureCredential(nil)
	if err != nil {
		panic(err)
	}

	// Create client with Azure endpoint and token credential
	client := openai.NewClient(
		option.WithBaseURL("https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/"),
		azure.WithTokenCredential(tokenCredential),
	)

	ctx := context.Background()
	question := "Tell me about the attention is all you need paper"

	resp, err := client.Responses.New(ctx, responses.ResponseNewParams{
		Input: responses.ResponseNewParamsInputUnion{OfString: openai.String(question)},
		Model: "o4-mini",
	})

	if err != nil {
		panic(err)
	}

	println(resp.OutputText())
}

Quellcode |REST-API-Referenzdokumentation | Paketreferenzdokumentation | Maven Central

Unterstützung der Azure OpenAI-API-Version

Installation

Gradle

implementation("com.openai:openai-java:4.0.1")

Maven

<dependency>
  <groupId>com.openai</groupId>
  <artifactId>openai-java</artifactId>
  <version>4.0.1</version>
</dependency>

Authentifizierung

Für die Authentifizierung mit Microsoft Entra ID ist eine anfängliche Einrichtung erforderlich:

Hinzufügen des Azure Identity-Pakets:

<dependency>
    <groupId>com.azure</groupId>
    <artifactId>azure-identity</artifactId>
    <version>1.18.0</version>
</dependency>

Nach der Einrichtung können Sie auswählen, welche Art von Anmeldeinformation aus azure.identity verwendet werden sollen. Beispielsweise kann DefaultAzureCredential zum Authentifizieren des Clients verwendet werden: Legen Sie die Werte der Client-ID, der Mandanten-ID und des geheimen Clientschlüssels der Microsoft Entra ID-Anwendung als Umgebungsvariablen fest: AZURE_CLIENT_ID, AZURE_TENANT_ID, AZURE_CLIENT_SECRET.

Autorisieren ist am einfachsten mit DefaultAzureCredential. ES ermittelt die besten Anmeldeinformationen, die in seiner Ausführungsumgebung verwendet werden können, obwohl die Verwendung von DefaultAzureCredential nur zu Testzwecken empfohlen wird und nicht für Produktionsumgebungen.

Credential tokenCredential = BearerTokenCredential.create(
        AuthenticationUtil.getBearerTokenSupplier(
                new DefaultAzureCredentialBuilder().build(),
                "https://cognitiveservices.azure.com/.default"));
OpenAIClient client = OpenAIOkHttpClient.builder()
        .baseUrl("https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/")
        .credential(tokenCredential)
        .build();

Weitere Informationen zur schlüssellosen Azure OpenAI-Authentifizierung finden Sie unter Verwenden von Azure OpenAI ohne Schlüssel.

Antworten

package com.example;

import com.openai.client.OpenAIClient;
import com.openai.client.okhttp.OpenAIOkHttpClient;
import com.openai.models.ChatModel;
import com.openai.models.responses.Response;
import com.openai.models.responses.ResponseCreateParams;
import com.azure.core.credential.AzureKeyCredential;

public class OpenAITest {
    public static void main(String[] args) {
        // Get API key from environment variable for security
        String apiKey = System.getenv("OPENAI_API_KEY");
        String resourceName = "https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1";
        String modelDeploymentName = "gpt-4.1"; //replace with you model deployment name

        try {
            OpenAIClient client = OpenAIOkHttpClient.builder()
                    .baseUrl(resourceName)
                    .apiKey(apiKey)
                    .build();

            ResponseCreateParams params = ResponseCreateParams.builder()
                    .input("Tell me about the bitter lesson?")
                    .model(modelDeploymentName)
                    .build();

            Response response = client.responses().create(params);
            
            System.out.println("Response: " + response);
        } catch (Exception e) {
            System.err.println("Error: " + e.getMessage());
            e.printStackTrace();
        }
    }
}

Quellcode | Paket (npm) | Referenz |

Unterstützung der Azure OpenAI-API-Version

Installation

npm install openai

Authentifizierung

npm install @azure/identity

Um den OpenAI-Client zu authentifizieren, müssen Sie jedoch die getBearerTokenProvider-Funktion aus dem @azure/identity-Paket verwenden. Diese Funktion erstellt einen Tokenanbieter, der OpenAI intern verwendet, um Token für jede Anforderung abzurufen. Der Tokenanbieter wird wie folgt erstellt:

import { DefaultAzureCredential, getBearerTokenProvider } from "@azure/identity";
import { OpenAI } from "openai";

const tokenProvider = getBearerTokenProvider(
    new DefaultAzureCredential(),
    'https://cognitiveservices.azure.com/.default');
const client = new OpenAI({
    baseURL: "https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/",
    apiKey: tokenProvider
});

Weitere Informationen zur schlüssellosen Azure OpenAI-Authentifizierung finden Sie im Schnellstartartikel „Erste Schritte mit dem Azure OpenAI-Sicherheitsbaustein“.

Antworten

responses.create

import { DefaultAzureCredential, getBearerTokenProvider } from "@azure/identity";
import { OpenAI } from "openai";

const tokenProvider = getBearerTokenProvider(
    new DefaultAzureCredential(),
    'https://cognitiveservices.azure.com/.default');
const client = new OpenAI({
    baseURL: "https://YOUR-RESORCE-NAME.openai.azure.com/openai/v1/",
    apiKey: tokenProvider
});

const response = await client.responses.create({
  model: 'gpt-4.1-nano', //model deployment name
  instructions: 'You are a helpful AI agent',
  input: 'Tell me about the bitter lesson?',
});

console.log(response.output_text);

Streamen

import { DefaultAzureCredential, getBearerTokenProvider } from "@azure/identity";
import { OpenAI } from "openai";

const tokenProvider = getBearerTokenProvider(
    new DefaultAzureCredential(),
    'https://cognitiveservices.azure.com/.default');
const client = new OpenAI({
    baseURL: "https://YOUR-RESORCE-NAME.openai.azure.com/openai/v1/",
    apiKey: tokenProvider
});

const stream = await client.responses.create({
  model: 'gpt-4.1-nano', // model deployment name
  input: 'Provide a brief history of the attention is all you need paper.',
  stream: true,
});

for await (const event of stream) {
  if (event.type === 'response.output_text.delta' && event.delta) {
    process.stdout.write(event.delta);
  }
}

MCP-Server

import { DefaultAzureCredential, getBearerTokenProvider } from "@azure/identity";
import { OpenAI } from "openai";

const tokenProvider = getBearerTokenProvider(
    new DefaultAzureCredential(),
    'https://cognitiveservices.azure.com/.default');
const client = new OpenAI({
    baseURL: "https://YOUR-RESORCE-NAME.openai.azure.com/openai/v1/",
    apiKey: tokenProvider
});

const resp = await client.responses.create({
  model: "gpt-5",
  tools: [
    {
      type: "mcp",
      server_label: "microsoft_learn",
      server_description: "Microsoft Learn MCP server for searching and fetching Microsoft documentation.",
      server_url: "https://learn.microsoft.com/api/mcp",
      require_approval: "never",
    },
  ],
  input: "Search for information about Azure Functions",
});

console.log(resp.output_text);

Chat

chat.completions.create

import { DefaultAzureCredential, getBearerTokenProvider } from "@azure/identity";
import { OpenAI } from "openai";

const tokenProvider = getBearerTokenProvider(
    new DefaultAzureCredential(),
    'https://cognitiveservices.azure.com/.default');
const client = new OpenAI({
    baseURL: "https://france-central-test-001.openai.azure.com/openai/v1/",
    apiKey: tokenProvider
});

const messages = [
    { role: 'system', content: 'You are a helpful assistant.' },
    { role: 'user', content: 'Tell me about the attention is all you need paper' }
];

// Make the API request with top-level await
const result = await client.chat.completions.create({ 
    messages, 
    model: 'gpt-4.1-nano', // model deployment name
    max_tokens: 100 
});

// Print the full response
console.log('Full response:', result);

// Print just the message content from the response
console.log('Response content:', result.choices[0].message.content);

Fehlerbehandlung

Fehlercodes

Statuscode Fehlertyp
400 Bad Request Error
401 Authentication Error
403 Permission Denied Error
404 Not Found Error
422 Unprocessable Entity Error
429 Rate Limit Error
500 Internal Server Error
503 Service Unavailable
504 Gateway Timeout

Wiederholungsversuche

Die folgenden Fehler werden standardmäßig zweimal mit einem kurzen exponentiellen Backoff zurückgezogen:

  • Verbindungsfehler
  • 408 Anforderungstimeout
  • 429 Ratenbegrenzung
  • >=500 Interne Fehler

Verwenden Sie maxRetries, um das Wiederholungsverhalten festzulegen/zu deaktivieren:

// Configure the default for all requests:
const client = new OpenAI({
  maxRetries: 0, // default is 2
});

// Or, configure per-request:
await client.chat.completions.create({ messages: [{ role: 'user', content: 'How can I get the name of the current day in Node.js?' }], model: '' }, {
  maxRetries: 5,
});

Quellcode der Bibliothek | Paket (PyPi) | Referenz |

Hinweis

Diese Bibliothek wird von OpenAI verwaltet. Lesen Sie den Versionsverlauf, um die neuesten Updates für die Bibliothek nachzuverfolgen.

Unterstützung der Azure OpenAI-API-Version

Installation

pip install openai

Für die neueste Version:

pip install openai --upgrade

Authentifizierung

Endpunkte und API-Schlüssel für Ihre Ressourcen können aus dem Azure-Portal oder dem Foundry-Portal abgerufen werden:

  • Melden Sie sich beim Azure-Portal> an, wählen Sie Ihre >>und Endpunkte aus.
  • Melden Sie sich beim Foundry-Portal> an, und wählen Sie Ihre Ressource aus.

Endpunkte und API-Schlüssel für Ihre Ressourcen können über das Azure-Portal oder das Microsoft Foundry-Portal abgerufen werden:

from openai import OpenAI
from azure.identity import DefaultAzureCredential, get_bearer_token_provider

token_provider = get_bearer_token_provider(
    DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default"
)

client = OpenAI(  
  base_url = "https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/",  
  api_key = token_provider  
)

Antwort-API

responses.create()

from openai import OpenAI
from azure.identity import DefaultAzureCredential, get_bearer_token_provider

token_provider = get_bearer_token_provider(
    DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default"
)

client = OpenAI(  
  base_url = "https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/",  
  api_key=token_provider,
)

response = client.responses.create(
    model="gpt-4.1-nano",
    input= "This is a test" 
)

print(response.model_dump_json(indent=2)) 

Weitere Beispiele finden Sie in der Dokumentation zur Antwort-API .

responses.create() mit MCP-Servertool

from openai import OpenAI
from azure.identity import DefaultAzureCredential, get_bearer_token_provider

token_provider = get_bearer_token_provider(
    DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default"
)

client = OpenAI(  
  base_url = "https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/",  
  api_key=token_provider,
)

resp = client.responses.create(
    model="gpt-5",
    tools=[
        {
            "type": "mcp",
            "server_label": "microsoft_learn",
            "server_description": "Microsoft Learn MCP server for searching and fetching Microsoft documentation.",
            "server_url": "https://learn.microsoft.com/api/mcp",
            "require_approval": "never",
        },
    ],
    input="Search for information about Azure Functions",
)

print(resp.output_text)

Weitere Beispiele finden Sie in der Dokumentation zur Antwort-API .

Chat

chat.completions.create()

from openai import OpenAI
from azure.identity import DefaultAzureCredential, get_bearer_token_provider

token_provider = get_bearer_token_provider(
    DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default"
)

client = OpenAI(  
  base_url = "https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/",  
  api_key=token_provider,
)

completion = client.chat.completions.create(
  model="gpt-4o", # Replace with your model deployment name.
  messages=[
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "When was Microsoft founded?"}
  ]
)

#print(completion.choices[0].message)
print(completion.model_dump_json(indent=2))

chat.completions.create() – Streaming

from openai import OpenAI
from azure.identity import DefaultAzureCredential, get_bearer_token_provider

token_provider = get_bearer_token_provider(
    DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default"
)

client = OpenAI(  
  base_url = "https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/",  
  api_key=token_provider,
)

completion = client.chat.completions.create(
  model="gpt-4o", # Replace with your model deployment name.
  messages=[
    {"role": "system", "content": "You are a helpful assistant."},
    {"role": "user", "content": "When was Microsoft founded?"}
  ],
  stream=True
)

for chunk in completion:
    if chunk.choices and chunk.choices[0].delta.content is not None:
        print(chunk.choices[0].delta.content, end='',)

chat.completions.create() – Bildeingabe

from openai import OpenAI
from azure.identity import DefaultAzureCredential, get_bearer_token_provider

token_provider = get_bearer_token_provider(
    DefaultAzureCredential(), "https://cognitiveservices.azure.com/.default"
)

client = OpenAI(  
  base_url = "https://YOUR-RESOURCE-NAME.openai.azure.com/openai/v1/",  
  api_key=token_provider,
)

completion = client.chat.completions.create(
    model="gpt-4o",
    messages=[
        {
            "role": "user",
            "content": [
                {"type": "text", "text": "What's in this image?"},
                {
                    "type": "image_url",
                    "image_url": {
                        "url": "https://raw.githubusercontent.com/MicrosoftDocs/azure-ai-docs/main/articles/ai-foundry/openai/media/how-to/generated-seattle.png",
                    }
                },
            ],
        }
    ],
    max_tokens=300,
)

print(completion.model_dump_json(indent=2))

Einbettungen

embeddings.create()

Einbettungen unterstützen derzeit keine Microsoft Entra-ID mit Azure OpenAI und der v1-API.

Optimierung

Feinabstimmung mit Python-Anleitungen

Fehlerbehandlung

# from openai import OpenAI
# client = OpenAI()

import openai

try:
    client.fine_tuning.jobs.create(
        model="gpt-4o",
        training_file="file-test",
    )
except openai.APIConnectionError as e:
    print("The server could not be reached")
    print(e.__cause__)  # an underlying Exception, likely raised within httpx.
except openai.RateLimitError as e:
    print("A 429 status code was received; we should back off a bit.")
except openai.APIStatusError as e:
    print("Another non-200-range status code was received")
    print(e.status_code)
    print(e.response)

Fehlercodes

Statuscode Fehlertyp
400 BadRequestError
401 AuthenticationError
403 PermissionDeniedError
404 NotFoundError
422 UnprocessableEntityError
429 RateLimitError
>=500 InternalServerError
Nicht verfügbar APIConnectionError

Anfordern von IDs

Um die ID Ihrer Anforderung abzurufen, können Sie die _request_id Eigenschaft verwenden, die dem x-request-id Antwortheader entspricht.

print(completion._request_id) 
print(legacy_completion._request_id)

Wiederholungsversuche

Die folgenden Fehler werden standardmäßig zweimal mit einem kurzen exponentiellen Backoff zurückgezogen:

  • Verbindungsfehler
  • 408 Anforderungstimeout
  • 429 Ratenbegrenzung
  • >=500 Interne Fehler

Verwenden Sie max_retries, um das Wiederholungsverhalten festzulegen/zu deaktivieren:

# For all requests

from openai import OpenAI
client = OpenAI(
      max_retries=0
)
# max retires for specific requests

client.with_options(max_retries=5).chat.completions.create(
    messages=[
        {
            "role": "user",
            "content": "When was Microsoft founded?",
        }
    ],
    model="gpt-4o",
)