Freigeben über


Ausführen von Notizbüchern auf dem Microsoft Sentinel-Datensee

Jupyter-Notizbücher bieten eine interaktive Umgebung zum Untersuchen, Analysieren und Visualisieren von Daten im Microsoft Sentinel-Datensee. Mit Notizbüchern können Sie Code schreiben und ausführen, Ihren Workflow dokumentieren und Ergebnisse anzeigen – alles an einer zentralen Stelle. Dies erleichtert das Durchführen der Datensuche, das Erstellen erweiterter Analyselösungen und das Teilen von Erkenntnissen mit anderen. Durch die Nutzung von Python und Apache Spark in Visual Studio Code helfen Ihnen Notizbücher beim Transformieren von Rohsicherheitsdaten in umsetzbare Intelligenz.

In diesem Artikel erfahren Sie, wie Sie Daten lake-Daten mithilfe von Jupyter-Notizbüchern in Visual Studio Code untersuchen und damit interagieren.

Voraussetzungen

Einführung in den Microsoft Sentinel Data Lake

Um Notizbücher im Microsoft Sentinel Data Lake zu verwenden, müssen Sie zuerst Zugang zum Data Lake erhalten. Wenn Sie noch nicht in den Sentinel-Datenlake integriert sind, lesen Sie Onboarding zu dem Microsoft Sentinel-Datenlake. Wenn Sie erst seit kurzem einen Data Lake verwenden, kann es einige Zeit dauern, bis genügend Daten erfasst wurden, bevor Sie mit Notebooks aussagekräftige Analysen erstellen können.

Erlaubnisse

Microsoft Entra ID-Rollen bieten umfassenden Zugriff auf alle Arbeitsbereiche im Data Lake. Alternativ können Sie über Azure RBAC-Rollen Zugriff auf einzelne Arbeitsbereiche gewähren. Benutzer mit Azure RBAC-Berechtigungen für Microsoft Sentinel-Arbeitsbereiche können Notebooks in diesen Arbeitsbereichen auf Ebene des Data Lake ausführen. Weitere Informationen finden Sie unter Rollen und Berechtigungen in Microsoft Sentinel.

Um neue benutzerdefinierte Tabellen auf der Analyseebene zu erstellen, muss die verwaltete Identität des Data Lake der Rolle Log Analytics-Mitwirkender im Log Analytics-Arbeitsbereich zugewiesen werden.

Führen Sie die folgenden Schritte aus, um die Rolle zuzuweisen:

  1. Navigieren Sie im Azure-Portal zum Log Analytics-Arbeitsbereich, dem Sie die Rolle zuweisen möchten.
  2. Wählen Sie im linken Navigationsbereich Zugriffssteuerung (IAM) aus.
  3. Wählen Sie "Rollenzuweisung hinzufügen" aus.
  4. Wählen Sie in der Tabelle "Rolle " die Option "Log Analytics-Mitwirkender" und dann "Weiter" aus.
  5. Wählen Sie "Verwaltete Identität" und dann " Mitglieder auswählen" aus.
  6. Die verwaltete Identität Ihres Data Lake ist eine vom System zugewiesene verwaltete Identität mit dem Namen msg-resources-<guid>. Wählen Sie die verwaltete Identität und dann "Auswählen" aus.
  7. Wählen Sie Überprüfen und zuweisen aus.

Weitere Informationen zum Zuweisen von Rollen zu verwalteten Identitäten finden Sie unter Zuweisen von Azure-Rollen mithilfe des Azure-Portals.

Installieren von Visual Studio Code und der Microsoft Sentinel-Erweiterung

Wenn Sie noch nicht über Visual Studio Code verfügen, laden Sie Visual Studio Code für Mac, Linux oder Windows herunter, und installieren Sie es.

Die Microsoft Sentinel-Erweiterung für Visual Studio Code (VS Code) wird über den Erweiterungs-Marketplace installiert. Führen Sie die folgenden Schritte aus, um die Erweiterung zu installieren:

  1. Wählen Sie auf der linken Symbolleiste den Erweiterungs-Marketplace aus.
  2. Suchen Sie nach Sentinel.
  3. Wählen Sie die Microsoft Sentinel-Erweiterung und dann "Installieren" aus.
  4. Nachdem die Erweiterung installiert wurde, wird das Microsoft Sentinel-Schildsymbol in der linken Symbolleiste angezeigt.

Screenshot des Erweiterungsmarktplatzes.

Installieren Sie die GitHub-Copilot-Erweiterung für Visual Studio Code, um Code-Vervollständigung und Vorschläge in Notizbüchern zu ermöglichen.

  1. Suchen Sie im Extensions Marketplace nach GitHub Copilot , und installieren Sie ihn.
  2. Melden Sie sich nach der Installation mit Ihrem GitHub-Konto bei GitHub Copilot an.

Erkunden von Tabellen auf Ebene des Data Lake

Nach der Installation der Microsoft Sentinel-Erweiterung können Sie beginnen, Tabellen auf Ebene des Data Lake zu untersuchen und Jupyter-Notizbücher zu erstellen, um die Daten zu analysieren.

Anmelden bei der Microsoft Sentinel-Erweiterung

  1. Wählen Sie auf der linken Symbolleiste das Microsoft Sentinel-Schildsymbol aus.

  2. Ein Dialogfeld wird mit dem folgenden Text angezeigt : Die Erweiterung "Microsoft Sentinel" möchte sich mit Microsoft anmelden. Wählen Sie Zulassen aus.

    Screenshot des Anmeldedialogfelds.

  3. Wählen Sie Ihren Kontonamen aus, um die Anmeldung abzuschließen.

    Screenshot der Kontoauswahlliste am oberen Rand der Seite.

Data-Lake-Tabellen und Jobs anzeigen

Nachdem Sie sich angemeldet haben, zeigt die Sentinel-Erweiterung eine Liste der Lake-Tabellen und Aufträge im linken Bereich an. Die Tabellen werden nach der Datenbank und Kategorie gruppiert. Wählen Sie eine Tabelle aus, um die Spaltendefinitionen anzuzeigen.

Informationen zu Aufträgen finden Sie unter Aufträge und Terminplanung.

Screenshot der Liste der Tabellen, Aufträge und metadaten der ausgewählten Tabelle.

Erstellen eines neuen Notebooks

  1. Verwenden Sie zum Erstellen eines neuen Notizbuchs eine der folgenden Methoden.

  2. Geben Sie das Suchfeld ein, oder drücken Sie >STRG+UMSCHALT+P , und geben Sie dann " Neues Jupyter-Notizbuch erstellen" ein. Screenshot, der zeigt, wie Sie ein neues Notizbuch über die Suchleiste erstellen.

  3. Wählen Sie "Neue Datei" > und dann " Jupyter-Notizbuch " aus der Dropdownliste aus.
    Screenshot zum Erstellen eines neuen Notizbuchs im Menü

  4. Fügen Sie im neuen Notizbuch den folgenden Code in die erste Zelle ein.

    from sentinel_lake.providers import MicrosoftSentinelProvider
    data_provider = MicrosoftSentinelProvider(spark)
    
    table_name = "EntraGroups"  
    df = data_provider.read_table(table_name)  
    df.select("displayName", "groupTypes", "mail", "mailNickname", "description", "tenantId").show(100,   truncate=False)  
    

Der Editor bietet IntelliSense-Codevervollständigung sowohl für die MicrosoftSentinelProvider Klasse als auch für die Tabellennamen im Data Lake.

  1. Wählen Sie das Dreieck Ausführen aus, um den Code im Notizbuch auszuführen. Die Ergebnisse werden im Ausgabebereich unterhalb der Codezelle angezeigt.
    Screenshot, der zeigt, wie eine Notizbuchzelle ausgeführt wird.

  2. Wählen Sie Microsoft Sentinel aus der Liste für eine Liste der Laufzeitpools aus. Ein Screenshot, der die Laufzeitauswahl zeigt.

  3. Wählen Sie Medium, um das Notizbuch im mittleren Laufzeitpool auszuführen. Weitere Informationen zu den verschiedenen Laufzeiten finden Sie unter Auswählen der entsprechenden Microsoft Sentinel-Laufzeit. Ein Screenshot, der eine Auswahl für die Größe des Ausführungspools zeigt.

Hinweis

Wenn Sie den Kernel auswählen, wird die Spark-Sitzung gestartet und der Code im Notizbuch ausgeführt. Nach der Auswahl des Pools kann es 3-5 Minuten dauern, bis die Sitzung gestartet wird. Nachfolgende Ausführungen werden schneller ausgeführt, da die Sitzung bereits aktiv ist.

Wenn die Sitzung gestartet wird, wird der Code im Notizbuch ausgeführt, und die Ergebnisse werden im Ausgabebereich unterhalb der Codezelle angezeigt, z. B. ein Screenshot, der die Ergebnisse aus der Ausführung einer Notizbuchzelle zeigt.

Beispielnotizbücher, die die Interaktion mit dem Microsoft Sentinel-Datensee veranschaulichen, finden Sie unter Beispielnotizbücher für Microsoft Sentinel-Datensee.

Statusleiste

Die Statusleiste unten im Notizbuch enthält Informationen zum aktuellen Status des Notizbuchs und zur Spark-Sitzung. Die Statusleiste enthält die folgenden Informationen:

  • Der vCore-Auslastungsprozentsatz für den ausgewählten Spark-Pool. Zeigen Sie mit der Maus auf den Prozentsatz, um die Anzahl der verwendeten vCores und die Gesamtanzahl der im Pool verfügbaren vCores anzuzeigen. Die Prozentsätze stellen die aktuelle Nutzung für interaktive Arbeitslasten und Auftragsarbeitslasten für das angemeldete Konto dar.

  • Der Verbindungsstatus der Spark-Sitzung, z. B. Connecting, Connected oder Not Connected.

Screenshot der Statusleiste am unteren Rand des Notizbuchs.

Festlegen von Session-Timeouts

Sie können die Sitzungsablaufzeit und Timeoutwarnungen für interaktive Notizbücher festlegen. Um das Timeout zu ändern, wählen Sie den Verbindungsstatus in der Statusleiste am unteren Rand des Notizbuchs aus. Wählen Sie aus den folgenden Optionen aus:

  • Festlegen des Sitzungstimeoutzeitraums: Legt die Zeit in Minuten vor dem Timeout der Sitzung fest. Der Standardwert ist 30 Minuten.

  • Sitzungs-Timeout zurücksetzen: Setzt das Sitzungs-Timeout auf den Standardwert von 30 Minuten zurück.

  • Festlegen des Warnzeitraums für Sitzungstimeouts: Legt die Zeit in Minuten vor dem Timeout fest, dass eine Warnung angezeigt wird, dass die Sitzung zu einem Timeout kommt. Der Standardwert ist 5 Minuten.

  • Zurücksetzen des Sitzungstimeouts-Warnzeitraums: Setzt die Warnung für das Sitzungstimeout auf den Standardwert von 5 Minuten zurück.

    Screenshot der Einstellung für das Sitzungstimeout.

Verwenden von GitHub Copilot in Notizbüchern

Verwenden Sie GitHub Copilot, um Code in Notizbüchern zu schreiben. GitHub Copilot bietet Codevorschläge und AutoVervollständigen basierend auf dem Kontext Ihres Codes. Um GitHub Copilot zu verwenden, stellen Sie sicher, dass die GitHub Copilot-Erweiterung in Visual Studio Code installiert ist.

Kopieren Sie Code aus den Beispielnotizbüchern für Microsoft Sentinel Data Lake , und speichern Sie ihn in Ihrem Notizbuchordner, um Kontext für GitHub Copilot bereitzustellen. GitHub Copilot kann dann Codeabschlusse basierend auf dem Kontext Ihres Notizbuchs vorschlagen.

Das folgende Beispiel zeigt, wie GitHub Copilot eine Codeüberprüfung generiert.

Screenshot, der GitHub Copilot zum Generieren eines Review zeigt.

Microsoft Sentinel-Anbieterklasse

Verwenden Sie die SentinelLakeProvider-Klasse, um eine Verbindung mit dem Microsoft Sentinel-Datenlake herzustellen. Diese Klasse ist Teil des access_module.data_loader Moduls und stellt Methoden für die Interaktion mit dem Datensee bereit. Um diese Klasse zu verwenden, importieren Sie sie, und erstellen Sie eine Instanz der Klasse mithilfe einer spark Sitzung.

from sentinel_lake.providers import MicrosoftSentinelProvider
data_provider = MicrosoftSentinelProvider(spark)

Weitere Informationen zu den verfügbaren Methoden finden Sie in der Referenz zur Microsoft Sentinel-Anbieterklasse.

Auswählen des entsprechenden Laufzeitpools

Es stehen drei Laufzeitpools zur Verfügung, um Ihre Jupyter-Notizbücher in der Microsoft Sentinel-Erweiterung auszuführen. Jeder Pool ist für unterschiedliche Workloads und Leistungsanforderungen ausgelegt. Die Auswahl des Laufzeitpools wirkt sich auf die Leistung, Kosten und Ausführungszeit Ihrer Spark-Aufträge aus.

Laufzeitpool Empfohlene Anwendungsfälle Merkmale
Klein Entwicklung, Tests und einfache explorative Analysen.
Kleine Workloads mit einfachen Transformationen.
Kosteneffizienz priorisiert.
Geeignet für kleine Workloads
Einfache Transformationen.
Niedrigere Kosten, längere Ausführungszeit.
Mittel ETL-Aufträge mit Verknüpfungen, Aggregationen und ML-Modellschulungen.
Moderate Arbeitslasten mit komplexen Transformationen.
Verbesserte Leistung gegenüber Small.
Behandelt Parallelität und moderate Speicherintensive Vorgänge.
Groß Deep Learning- und ML-Workloads.
Umfangreiches Datenshuffling, große Verknüpfungen oder Echtzeitverarbeitung.
Kritische Ausführungszeit.
Hoher Arbeitsspeicher und Rechenleistung.
Minimale Verzögerungen.
Am besten geeignet für große, komplexe oder zeitkritische Workloads.

Hinweis

Beim ersten Zugriff kann es etwa 30 Sekunden dauern, bis Kerneloptionen geladen werden.
Nach dem Auswählen eines Laufzeitpools kann es 3 bis 5 Minuten dauern, bis die Sitzung gestartet wird.

Anzeigen von Nachrichten, Protokollen und Fehlern

Nachrichtenprotokolle und Fehlermeldungen werden in drei Bereichen in Visual Studio Code angezeigt.

  1. Der Ausgabebereich .

    1. Wählen Sie im Ausgabebereichmicrosoft Sentinel aus der Dropdownliste aus.
    2. Wählen Sie "Debuggen" aus, um detaillierte Protokolleinträge einzuschließen.

    Screenshot des Ausgabebereichs.

  2. Inline-Nachrichten im Notebook stellen Feedback und Informationen zur Ausführung von Codezellen bereit. Zu diesen Nachrichten gehören Aktualisierungen des Ausführungsstatus, Statusanzeigen und Fehlerbenachrichtigungen im Zusammenhang mit dem Code in der vorherigen Zelle.

  3. Ein Benachrichtigungs-Popup in der unteren rechten Ecke von Visual Studio Code, auch als Toast-Nachricht bekannt, bietet Echtzeit-Benachrichtigungen und Updates zum Status der Operationen innerhalb des Notizbuchs und der Spark-Sitzung. Zu diesen Benachrichtigungen gehören Meldungen, Warnungen und Fehlermeldungen, wie die erfolgreiche Verbindung zu einer Spark-Sitzung und Timeout-Warnungen.

    Screenshot: Popupnachricht und Inline-Fehlermeldung

Aufträge und Planung

Sie können Aufträge für die Ausführung zu bestimmten Zeiten oder Intervallen mithilfe der Microsoft Sentinel-Erweiterung für Visual Studio Code planen. Mit Jobs können Sie Datenverarbeitungsaufgaben automatisieren, um Daten im Microsoft Sentinel Datensee zusammenzufassen, zu transformieren oder zu analysieren. Aufträge werden auch verwendet, um Daten zu verarbeiten und Ergebnisse in benutzerdefinierte Tabellen auf Ebene des Data Lake oder der Analyse zu schreiben. Weitere Informationen zum Erstellen und Verwalten von Aufträgen finden Sie unter Erstellen und Verwalten von Jupyter-Notizbuchaufträgen.

Dienstparameter und Grenzwerte für VS Code Notebooks

Im folgenden Abschnitt werden die Dienstparameter und Grenzwerte für Microsoft Sentinel-Datensee bei Verwendung von VS Code Notebooks aufgeführt.

Kategorie Parameter/Grenzwert
Benutzerdefinierte Tabelle auf der Analyseebene Benutzerdefinierte Tabellen in der Analyseebene können nicht aus einem Notizbuch gelöscht werden. Verwenden Sie Log Analytics, um diese Tabellen zu löschen. Weitere Informationen finden Sie unter Hinzufügen oder Löschen von Tabellen und Spalten in Azure Monitor-Protokollen
Timeout für Gateway-Websocket 2 Stunden
Interactive Query-Timeout 2 Stunden
Inaktivitäts-Timeout für interaktive Sitzungen 20 Minuten
Sprache Python
Timeout des Notebook-Auftrags 8 Stunden
Maximale Anzahl gleichzeitiger Notebook-Aufträge 3, nachfolgende Aufträge werden in die Warteschlange gestellt
Maximale Anzahl gleichzeitiger Benutzer bei interaktiven Abfragen 8-10 im großen Pool
Sitzungsstartzeit Es dauert etwa 5 bis 6 Minuten, bis die Spark-Computesitzung gestartet wird. Sie können den Status der Sitzung unten im VS-Codenotizbuch anzeigen.
Unterstützte Bibliotheken Nur Azure Synapse-Bibliotheken 3.4 und die Microsoft Sentinel-Anbieterbibliothek für abstrahierte Funktionen werden zum Abfragen des Datensees unterstützt. Pip-Installationen oder benutzerdefinierte Bibliotheken werden nicht unterstützt.
VS-Code-UX-Grenzwert zum Anzeigen von Datensätzen 100.000 Zeilen

Problembehandlung

In der folgenden Tabelle sind häufige Fehler aufgeführt, die beim Arbeiten mit Notizbüchern auftreten können, deren Ursachen und vorgeschlagenen Aktionen, um sie zu beheben.

Fehlerkategorie Fehlername Fehlercode Fehlermeldung Vorgeschlagene Maßnahme
DatabaseError DatenbankNichtGefunden 2001 Die Datenbank '{DatabaseName}' wurde nicht gefunden. Stellen Sie sicher, dass die Datenbank vorhanden ist. Wenn die Datenbank neu ist, warten Sie auf eine Metadatenaktualisierung.
DatabaseError MehrdeutigerDatenbankname 2002 Mehrere Datenbanken (IDs: {DatabaseID1}, {DatabaseID2}, ...) teilen den Namen {DatabaseName}. Geben Sie eine bestimmte Datenbank-ID an. Geben Sie eine Datenbank-ID an, wenn mehrere Datenbanken denselben Namen haben.
DatabaseError DatenbankIdFehlanpassung 2003 Die Datenbank ({DatabaseName}, ID {DatabaseID}) wurde nicht gefunden. Überprüfen Sie sowohl den Datenbanknamen als auch die ID. Zum Abrufen von Datenbank-IDs listen Sie alle Datenbanken auf.
DatabaseError FehlerBeimAuflistenVonDatenbanken 2004 Datenbanken können nicht abgerufen werden. Starten Sie die Sitzung neu, und versuchen Sie es erneut. Starten Sie die Sitzung neu, und wiederholen Sie den Vorgang nach ein paar Minuten.
TabellenFehler TableDoesNotExist 2100 Die Tabelle {TableName} wurde in der Datenbank {DatabaseName} nicht gefunden. Stellen Sie sicher, dass die Tabelle in der Datenbank vorhanden ist. Wenn die Tabelle oder Datenbank neu ist, warten Sie einige Minuten, und versuchen Sie es erneut.
TabellenFehler BereitstellungUnvollständig 2101 Tabelle {TableName} ist nicht bereit. Warten Sie vor dem Wiederholen des Vorgangs einige Minuten. Die Tabelle wird bereitgestellt. Warten Sie vor dem Wiederholen des Vorgangs einige Minuten.
TabellenFehler DeltaTableMissing 2102 Tabelle {TableName} ist leer. Es kann bis zu ein paar Stunden dauern, bis neue Tabellen fertig sind. Es kann einige Stunden dauern, bis eine Analysetabelle vollständig mit dem Datensee synchronisiert wird. Überprüfen Sie bei Tabellen, die sich nur im Datensee befinden, ob die Daten geladen oder wiederhergestellt werden müssen.
TabellenFehler TabelleExistiertNichtZumLöschen 2103 Tabelle kann nicht gelöscht werden. Tabelle {TableName} wurde nicht gefunden. Stellen Sie sicher, dass die Tabelle in der Datenbank vorhanden ist. Wenn die Tabelle oder Datenbank neu ist, warten Sie einige Minuten, und versuchen Sie es erneut.
AuthorizationFailure MissingSASToken 2201 Auf die Tabelle kann nicht zugegriffen werden. Starten Sie die Sitzung neu, und versuchen Sie es erneut. Fehler bei der Autorisierung beim Abrufen des Zugriffstokens für die Tabelle. Starten Sie die Sitzung neu, und versuchen Sie es erneut.
AuthorizationFailure InvalidSASToken 2202 Auf die Tabelle kann nicht zugegriffen werden. Starten Sie die Sitzung neu, und versuchen Sie es erneut. Fehler bei der Autorisierung beim Abrufen des Zugriffstokens für die Tabelle. Starten Sie die Sitzung neu, und versuchen Sie es erneut.
AuthorizationFailure Token abgelaufen 2203 Auf die Tabelle kann nicht zugegriffen werden. Starten Sie die Sitzung neu, und versuchen Sie es erneut. Fehler bei der Autorisierung beim Abrufen des Zugriffstokens für die Tabelle. Starten Sie die Sitzung neu, und versuchen Sie es erneut.
AuthorizationFailure TabelleUnzureichendeBerechtigungen 2204 Der Zugriff ist für die Tabelle {TableName} in der Datenbank {DatabaseName} erforderlich. Wenden Sie sich an einen Administrator, um den Zugriff auf die Tabelle oder die Datenbank (Arbeitsbereich) anzufordern.
AuthorizationFailure InternerTabellenZugriffVerweigert 2205 Der Zugriff auf die Tabelle "{TableName}" ist eingeschränkt. Nur auf system- oder benutzerdefinierte Tabellen kann über ein Notizbuch zugegriffen werden.
AuthorizationFailure Tabellenauthentifizierungsfehler 2206 Daten können nicht in die Tabelle gespeichert werden. Starten Sie die Sitzung neu, und versuchen Sie es erneut. Fehler bei der Autorisierung beim Versuch, Daten in der Tabelle zu speichern. Starten Sie die Sitzung neu, und versuchen Sie es erneut.
Konfigurationsfehler HadoopKonfigurationsfehler 2301 Sitzungskonfiguration kann nicht aktualisiert werden. Starten Sie die Sitzung neu, und versuchen Sie es erneut. Dieses Problem ist vorübergehend und kann behoben werden, indem die Sitzung neu gestartet und erneut versucht wird. Wenn dieses Problem weiterhin besteht, wenden Sie sich an den Support.
DataError Json-Parsing-Fehler 2302 Tabellenmetadaten wurden beschädigt. Wenden Sie sich an den Support, um Unterstützung zu erhalten. Wenden Sie sich an den Support, um Unterstützung zu erhalten. Geben Sie Ihre Mandanten-ID, den Tabellennamen und den Datenbanknamen an.
TableSchemaError TableSchemaMismatch 2401 Die Spalte wurde in der Zieltabelle nicht gefunden. Richten Sie das DataFrame-Schema und die Zieltabelle aus, oder verwenden Sie den Überschreibmodus. Aktualisieren Sie das DataFrame-Schema so, dass es der Tabelle in Ihrer Zieldatenbank entspricht. Sie können die Tabelle auch vollständig im Überschreibmodus ersetzen.
TableSchemaError FehlendeErforderlicheSpalten 2402 Spalte {ColumnName} fehlt im DataFrame. Überprüfen Sie das DataFrame-Schema, und richten Sie es an der Zieltabelle aus. Aktualisieren Sie das DataFrame-Schema so, dass es der Tabelle in Ihrer Zieldatenbank entspricht. Sie können die Tabelle auch vollständig im Überschreibmodus ersetzen.
TableSchemaError Änderung des Spaltentyps nicht erlaubt 2403 Der Datentyp der Spalte "{ColumnName}" kann nicht geändert werden. Eine Datentypänderung ist für die Spalte nicht zulässig. Überprüfen Sie vorhandene Spalten in der Zieltabelle, und richten Sie alle Datentypen im DataFrame aus.
TableSchemaError Änderung der Spaltennullbarkeit nicht erlaubt 2404 Die Nullierbarkeit der Spalte '{ColumnName}' kann nicht geändert werden. Die Einstellungen der NULL-Zulässigkeit der Spalte können nicht aktualisiert werden. Überprüfen Sie die Zieltabelle, und richten Sie die Einstellungen am DataFrame aus.
Eingabefehler OrdnerErstellungsfehler 2501 Speicher für die Tabelle '{TableName}' kann nicht erstellt werden. Dieses Problem ist vorübergehend und kann behoben werden, indem die Sitzung neu gestartet und erneut versucht wird. Wenn dieses Problem weiterhin besteht, wenden Sie sich an den Support.
Eingabefehler Fehler bei der Unterauftragsanforderung 2502 Der Ingestionsauftrag für die Tabelle "{TableName}" kann nicht erstellt werden. Dieses Problem ist vorübergehend und kann behoben werden, indem die Sitzung neu gestartet und erneut versucht wird. Wenn dieses Problem weiterhin besteht, wenden Sie sich an den Support.
Eingabefehler SubJobCreationFailure 2503 Der Ingestionsauftrag für die Tabelle "{TableName}" kann nicht erstellt werden. Dieses Problem ist vorübergehend und kann behoben werden, indem die Sitzung neu gestartet und erneut versucht wird. Wenn dieses Problem weiterhin besteht, wenden Sie sich an den Support.
InputError Ungültiger Schreibmodus 2601 Ungültiger Schreibmodus. Verwenden Sie "Anfüge" oder "Überschreiben". Geben Sie einen gültigen Schreibmodus an (Anfügen oder Überschreiben), bevor Sie den DataFrame speichern.
InputError PartitioningNotAllowed 2602 Analysetabellen können nicht partitioniert werden. Entfernen Sie alle Partitionen für alle Spalten in Analysetabellen.
InputError MissingTableSuffixLake 2603 Ungültiger benutzerdefinierter Tabellenname. Alle Namen benutzerdefinierter Tabellen im Datensee müssen mit _SPRK enden. Fügen Sie _SPRK als Suffix zum Tabellennamen hinzu, bevor Sie sie in den Datensee schreiben.
InputError MissingTableSuffixLA 2604 Ungültiger benutzerdefinierter Tabellenname. Alle Namen benutzerdefinierter Analysetabellen müssen mit _SPRK_CL enden. Fügen Sie _SPRK_CL als Suffix zum Tabellennamen hinzu, bevor Sie sie in den Analysespeicher schreiben.
Unbekannter Fehler Interner Serverfehler 2901 Es ist ein Problem aufgetreten. Starten Sie die Sitzung neu, und versuchen Sie es erneut. Dieses Problem ist vorübergehend und kann behoben werden, indem die Sitzung neu gestartet und erneut versucht wird. Wenn dieses Problem weiterhin besteht, wenden Sie sich an den Support.