Note
Access to this page requires authorization. You can try signing in or changing directories.
Access to this page requires authorization. You can try changing directories.
Microsoft Agent Framework supports adding Retrieval Augmented Generation (RAG) capabilities to agents easily by adding AI Context Providers to the agent.
Using TextSearchProvider
The TextSearchProvider class is an out-of-the-box implementation of a RAG context provider.
It can easily be attached to a ChatClientAgent using the AIContextProviderFactory option to provide RAG capabilities to the agent.
// Create the AI agent with the TextSearchProvider as the AI context provider.
AIAgent agent = azureOpenAIClient
.GetChatClient(deploymentName)
.CreateAIAgent(new ChatClientAgentOptions
{
Instructions = "You are a helpful support specialist for Contoso Outdoors. Answer questions using the provided context and cite the source document when available.",
AIContextProviderFactory = ctx => new TextSearchProvider(SearchAdapter, ctx.SerializedState, ctx.JsonSerializerOptions, textSearchOptions)
});
The TextSearchProvider requires a function that provides the search results given a query. This can be implemented using any search technology, e.g. Azure AI Search, or a web search engine.
Here is an example of a mock search function that returns pre-defined results based on the query.
SourceName and SourceLink are optional, but if provided will be used by the agent to cite the source of the information when answering the user's question.
static Task<IEnumerable<TextSearchProvider.TextSearchResult>> SearchAdapter(string query, CancellationToken cancellationToken)
{
// The mock search inspects the user's question and returns pre-defined snippets
// that resemble documents stored in an external knowledge source.
List<TextSearchProvider.TextSearchResult> results = new();
if (query.Contains("return", StringComparison.OrdinalIgnoreCase) || query.Contains("refund", StringComparison.OrdinalIgnoreCase))
{
results.Add(new()
{
SourceName = "Contoso Outdoors Return Policy",
SourceLink = "https://contoso.com/policies/returns",
Text = "Customers may return any item within 30 days of delivery. Items should be unused and include original packaging. Refunds are issued to the original payment method within 5 business days of inspection."
});
}
return Task.FromResult<IEnumerable<TextSearchProvider.TextSearchResult>>(results);
}
TextSearchProvider Options
The TextSearchProvider can be customized via the TextSearchProviderOptions class. Here is an example of creating options to run the search prior to every model invocation and keep a short rolling window of conversation context.
TextSearchProviderOptions textSearchOptions = new()
{
// Run the search prior to every model invocation and keep a short rolling window of conversation context.
SearchTime = TextSearchProviderOptions.TextSearchBehavior.BeforeAIInvoke,
RecentMessageMemoryLimit = 6,
};
The TextSearchProvider class supports the following options via the TextSearchProviderOptions class.
| Option | Type | Description | Default |
|---|---|---|---|
| SearchTime | TextSearchProviderOptions.TextSearchBehavior |
Indicates when the search should be executed. There are two options, each time the agent is invoked, or on-demand via function calling. | TextSearchProviderOptions.TextSearchBehavior.BeforeAIInvoke |
| FunctionToolName | string |
The name of the exposed search tool when operating in on-demand mode. | "Search" |
| FunctionToolDescription | string |
The description of the exposed search tool when operating in on-demand mode. | "Allows searching for additional information to help answer the user question." |
| ContextPrompt | string |
The context prompt prefixed to results when operating in BeforeAIInvoke mode. |
"## Additional Context\nConsider the following information from source documents when responding to the user:" |
| CitationsPrompt | string |
The instruction appended after results to request citations when operating in BeforeAIInvoke mode. |
"Include citations to the source document with document name and link if document name and link is available." |
| ContextFormatter | Func<IList<TextSearchProvider.TextSearchResult>, string> |
Optional delegate to fully customize formatting of the result list when operating in BeforeAIInvoke mode. If provided, ContextPrompt and CitationsPrompt are ignored. |
null |
| RecentMessageMemoryLimit | int |
The number of recent conversation messages (both user and assistant) to keep in memory and include when constructing the search input for BeforeAIInvoke searches. |
0 (disabled) |
| RecentMessageRolesIncluded | List<ChatRole> |
The list of ChatRole types to filter recent messages to when deciding which recent messages to include when constructing the search input. |
ChatRole.User |
Using Semantic Kernel VectorStore with Agent Framework
Agent Framework supports using Semantic Kernel's VectorStore collections to provide RAG capabilities to agents. This is achieved through the bridge functionality that converts Semantic Kernel search functions into Agent Framework tools.
Important
This feature requires semantic-kernel version 1.38 or higher.
Creating a Search Tool from VectorStore
The create_search_function method from a Semantic Kernel VectorStore collection returns a KernelFunction that can be converted to an Agent Framework tool using .as_agent_framework_tool().
Use the vector store connectors documentation to learn how to set up different vector store collections.
from semantic_kernel.connectors.ai.open_ai import OpenAITextEmbedding
from semantic_kernel.connectors.azure_ai_search import AzureAISearchCollection
from semantic_kernel.functions import KernelParameterMetadata
from agent_framework.openai import OpenAIResponsesClient
# Define your data model
class SupportArticle:
article_id: str
title: str
content: str
category: str
# ... other fields
# Create an Azure AI Search collection
collection = AzureAISearchCollection[str, SupportArticle](
record_type=SupportArticle,
embedding_generator=OpenAITextEmbedding()
)
async with collection:
await collection.ensure_collection_exists()
# Load your knowledge base articles into the collection
# await collection.upsert(articles)
# Create a search function from the collection
search_function = collection.create_search_function(
function_name="search_knowledge_base",
description="Search the knowledge base for support articles and product information.",
search_type="keyword_hybrid",
parameters=[
KernelParameterMetadata(
name="query",
description="The search query to find relevant information.",
type="str",
is_required=True,
type_object=str,
),
KernelParameterMetadata(
name="top",
description="Number of results to return.",
type="int",
default_value=3,
type_object=int,
),
],
string_mapper=lambda x: f"[{x.record.category}] {x.record.title}: {x.record.content}",
)
# Convert the search function to an Agent Framework tool
search_tool = search_function.as_agent_framework_tool()
# Create an agent with the search tool
agent = OpenAIResponsesClient(model_id="gpt-4o").create_agent(
instructions="You are a helpful support specialist. Use the search tool to find relevant information before answering questions. Always cite your sources.",
tools=search_tool
)
# Use the agent with RAG capabilities
response = await agent.run("How do I return a product?")
print(response.text)
Customizing Search Behavior
You can customize the search function with various options:
# Create a search function with filtering and custom formatting
search_function = collection.create_search_function(
function_name="search_support_articles",
description="Search for support articles in specific categories.",
search_type="keyword_hybrid",
# Apply filters to restrict search scope
filter=lambda x: x.is_published == True,
parameters=[
KernelParameterMetadata(
name="query",
description="What to search for in the knowledge base.",
type="str",
is_required=True,
type_object=str,
),
KernelParameterMetadata(
name="category",
description="Filter by category: returns, shipping, products, or billing.",
type="str",
type_object=str,
),
KernelParameterMetadata(
name="top",
description="Maximum number of results to return.",
type="int",
default_value=5,
type_object=int,
),
],
# Customize how results are formatted for the agent
string_mapper=lambda x: f"Article: {x.record.title}\nCategory: {x.record.category}\nContent: {x.record.content}\nSource: {x.record.article_id}",
)
For the full details on the parameters available for create_search_function, see the Semantic Kernel documentation.
Using Multiple Search Functions
You can provide multiple search tools to an agent for different knowledge domains:
# Create search functions for different knowledge bases
product_search = product_collection.create_search_function(
function_name="search_products",
description="Search for product information and specifications.",
search_type="semantic_hybrid",
string_mapper=lambda x: f"{x.record.name}: {x.record.description}",
).as_agent_framework_tool()
policy_search = policy_collection.create_search_function(
function_name="search_policies",
description="Search for company policies and procedures.",
search_type="keyword_hybrid",
string_mapper=lambda x: f"Policy: {x.record.title}\n{x.record.content}",
).as_agent_framework_tool()
# Create an agent with multiple search tools
agent = chat_client.create_agent(
instructions="You are a support agent. Use the appropriate search tool to find information before answering. Cite your sources.",
tools=[product_search, policy_search]
)
You can also create multiple search functions from the same collection with different descriptions and parameters to provide specialized search capabilities:
# Create multiple search functions from the same collection
# Generic search for broad queries
general_search = support_collection.create_search_function(
function_name="search_all_articles",
description="Search all support articles for general information.",
search_type="semantic_hybrid",
parameters=[
KernelParameterMetadata(
name="query",
description="The search query.",
type="str",
is_required=True,
type_object=str,
),
],
string_mapper=lambda x: f"{x.record.title}: {x.record.content}",
).as_agent_framework_tool()
# Detailed lookup for specific article IDs
detail_lookup = support_collection.create_search_function(
function_name="get_article_details",
description="Get detailed information for a specific article by its ID.",
search_type="keyword",
top=1,
parameters=[
KernelParameterMetadata(
name="article_id",
description="The specific article ID to retrieve.",
type="str",
is_required=True,
type_object=str,
),
],
string_mapper=lambda x: f"Title: {x.record.title}\nFull Content: {x.record.content}\nLast Updated: {x.record.updated_date}",
).as_agent_framework_tool()
# Create an agent with both search functions
agent = chat_client.create_agent(
instructions="You are a support agent. Use search_all_articles for general queries and get_article_details when you need full details about a specific article.",
tools=[general_search, detail_lookup]
)
This approach allows the agent to choose the most appropriate search strategy based on the user's query.
Supported VectorStore Connectors
This pattern works with any Semantic Kernel VectorStore connector, including:
- Azure AI Search (
AzureAISearchCollection) - Qdrant (
QdrantCollection) - Pinecone (
PineconeCollection) - Redis (
RedisCollection) - Weaviate (
WeaviateCollection) - In-Memory (
InMemoryVectorStoreCollection) - And more
Each connector provides the same create_search_function method that can be bridged to Agent Framework tools, allowing you to choose the vector database that best fits your needs. See the full list here.