Note
Access to this page requires authorization. You can try signing in or changing directories.
Access to this page requires authorization. You can try changing directories.
Generates a geometric distribution.
template<class IntType = int>
class geometric_distribution
{
public:
// types
typedef IntType result_type;
struct param_type;
// constructors and reset functions
explicit geometric_distribution(double p = 0.5);
explicit geometric_distribution(const param_type& parm);
void reset();
// generating functions
template<class URNG>
result_type operator()(URNG& gen);
template<class URNG>
result_type operator()(URNG& gen, const param_type& parm);
// property functions
double p() const;
param_type param() const;
void param(const param_type& parm);
result_type min() const;
result_type max() const;
};
Parameters
- IntType
The integer result type, defaults to int. For possible types, see <random>.
Remarks
The template class describes a distribution that produces values of a user-specified integral type with a geometric distribution. The following table links to articles about individual members.
geometric_distribution::p |
geometric_distribution::param |
|
geometric_distribution::operator() |
The property function p() returns the value for stored distribution parameter p.
For more information about distribution classes and their members, see <random>.
For detailed information about the chi-squared distribution, see the Wolfram MathWorld article Geometric Distribution.
Example
// compile with: /EHsc /W4
#include <random>
#include <iostream>
#include <iomanip>
#include <string>
#include <map>
void test(const double p, const int s) {
// uncomment to use a non-deterministic generator
// std::random_device gen;
std::mt19937 gen(1701);
std::geometric_distribution<> distr(p);
std::cout << std::endl;
std::cout << "min() == " << distr.min() << std::endl;
std::cout << "max() == " << distr.max() << std::endl;
std::cout << "p() == " << std::fixed << std::setw(11) << std::setprecision(10) << distr.p() << std::endl;
// generate the distribution as a histogram
std::map<int, int> histogram;
for (int i = 0; i < s; ++i) {
++histogram[distr(gen)];
}
// print results
std::cout << "Distribution for " << s << " samples:" << std::endl;
for (const auto& elem : histogram) {
std::cout << std::setw(5) << elem.first << ' ' << std::string(elem.second, ':') << std::endl;
}
std::cout << std::endl;
}
int main()
{
double p_dist = 0.5;
int samples = 100;
std::cout << "Use CTRL-Z to bypass data entry and run using default values." << std::endl;
std::cout << "Enter a floating point value for the \'p\' distribution parameter: ";
std::cin >> p_dist;
std::cout << "Enter an integer value for the sample count: ";
std::cin >> samples;
test(p_dist, samples);
}
Output
First test:
Use CTRL-Z to bypass data entry and run using default values.
Enter a floating point value for the 'p' distribution parameter: .5
Enter an integer value for the sample count: 100
min() == 0
max() == 2147483647
p() == 0.5000000000
Distribution for 100 samples:
0 ::::::::::::::::::::::::::::::::::::::::::::::::::::
1 ::::::::::::::::::::::::
2 ::::::::::::::
3 :::::
4 ::
5 ::
6 :
Second test:
Use CTRL-Z to bypass data entry and run using default values.
Enter a floating point value for the 'p' distribution parameter: .1
Enter an integer value for the sample count: 100
min() == 0
max() == 2147483647
p() == 0.1000000000
Distribution for 100 samples:
0 :::::::::
1 :::::::::::
2 :::::::
3 ::::::::
4 ::::::::
5 ::::::
6 :::::
7 ::::::
8 :::::
9 ::::
10 ::::
11 ::
12 :
13 :
14 :::
15 ::::
16 :::
17 :
18 :
19 :
20 ::
21 :
22 :
23 :
28 ::
33 :
35 :
40 :
Requirements
Header: <random>
Namespace: std