NormalizationCatalog.NormalizeGlobalContrast Método
Definición
Importante
Parte de la información hace referencia a la versión preliminar del producto, que puede haberse modificado sustancialmente antes de lanzar la versión definitiva. Microsoft no otorga ninguna garantía, explícita o implícita, con respecto a la información proporcionada aquí.
Cree un GlobalContrastNormalizingEstimatorobjeto , que normaliza las columnas aplicando individualmente la normalización de contraste global.
trueSi se establece ensureZeroMean en , se aplicará un paso de procesamiento previo para que la media de la columna especificada sea el vector cero.
public static Microsoft.ML.Transforms.GlobalContrastNormalizingEstimator NormalizeGlobalContrast(this Microsoft.ML.TransformsCatalog catalog, string outputColumnName, string inputColumnName = default, bool ensureZeroMean = true, bool ensureUnitStandardDeviation = false, float scale = 1);
static member NormalizeGlobalContrast : Microsoft.ML.TransformsCatalog * string * string * bool * bool * single -> Microsoft.ML.Transforms.GlobalContrastNormalizingEstimator
<Extension()>
Public Function NormalizeGlobalContrast (catalog As TransformsCatalog, outputColumnName As String, Optional inputColumnName As String = Nothing, Optional ensureZeroMean As Boolean = true, Optional ensureUnitStandardDeviation As Boolean = false, Optional scale As Single = 1) As GlobalContrastNormalizingEstimator
Parámetros
- catalog
- TransformsCatalog
Catálogo de la transformación.
- outputColumnName
- String
Nombre de la columna resultante de la transformación de inputColumnName.
El tipo de datos de esta columna será el mismo que el tipo de datos de la columna de entrada.
- inputColumnName
- String
Nombre de la columna que se va a normalizar. Si se establece en null, el valor de outputColumnName se usará como origen.
Este estimador funciona sobre vectores de tamaño conocido de Single.
- ensureZeroMean
- Boolean
Si truees , resta la media de cada valor antes de normalizar y usar la entrada sin procesar de lo contrario.
- ensureUnitStandardDeviation
- Boolean
Si truees , la desviación estándar del vector resultante sería una.
De lo contrario, la norma L2 del vector resultante sería una.
- scale
- Single
Escale las características por este valor.
Devoluciones
Ejemplos
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic
{
class NormalizeGlobalContrast
{
public static void Example()
{
// Create a new ML context, for ML.NET operations. It can be used for
// exception tracking and logging, as well as the source of randomness.
var mlContext = new MLContext();
var samples = new List<DataPoint>()
{
new DataPoint(){ Features = new float[4] { 1, 1, 0, 0} },
new DataPoint(){ Features = new float[4] { 2, 2, 0, 0} },
new DataPoint(){ Features = new float[4] { 1, 0, 1, 0} },
new DataPoint(){ Features = new float[4] { 0, 1, 0, 1} }
};
// Convert training data to IDataView, the general data type used in
// ML.NET.
var data = mlContext.Data.LoadFromEnumerable(samples);
var approximation = mlContext.Transforms.NormalizeGlobalContrast(
"Features", ensureZeroMean: false, scale: 2,
ensureUnitStandardDeviation: true);
// Now we can transform the data and look at the output to confirm the
// behavior of the estimator. This operation doesn't actually evaluate
// data until we read the data below.
var tansformer = approximation.Fit(data);
var transformedData = tansformer.Transform(data);
var column = transformedData.GetColumn<float[]>("Features").ToArray();
foreach (var row in column)
Console.WriteLine(string.Join(", ", row.Select(x => x.ToString(
"f4"))));
// Expected output:
// 2.0000, 2.0000,-2.0000,-2.0000
// 2.0000, 2.0000,-2.0000,-2.0000
// 2.0000,-2.0000, 2.0000,-2.0000
//- 2.0000, 2.0000,-2.0000, 2.0000
}
private class DataPoint
{
[VectorType(4)]
public float[] Features { get; set; }
}
}
}