StandardTrainersCatalog.PairwiseCoupling<TModel> Método
Definición
Importante
Parte de la información hace referencia a la versión preliminar del producto, que puede haberse modificado sustancialmente antes de lanzar la versión definitiva. Microsoft no otorga ninguna garantía, explícita o implícita, con respecto a la información proporcionada aquí.
Cree un PairwiseCouplingTrainer, que predice un destino multiclase mediante la estrategia de acoplamiento en pares con el estimador de clasificación binaria especificado por binaryEstimator.
public static Microsoft.ML.Trainers.PairwiseCouplingTrainer PairwiseCoupling<TModel>(this Microsoft.ML.MulticlassClassificationCatalog.MulticlassClassificationTrainers catalog, Microsoft.ML.Trainers.ITrainerEstimator<Microsoft.ML.ISingleFeaturePredictionTransformer<TModel>,TModel> binaryEstimator, string labelColumnName = "Label", bool imputeMissingLabelsAsNegative = false, Microsoft.ML.IEstimator<Microsoft.ML.ISingleFeaturePredictionTransformer<Microsoft.ML.Calibrators.ICalibrator>> calibrator = default, int maximumCalibrationExampleCount = 1000000000) where TModel : class;
static member PairwiseCoupling : Microsoft.ML.MulticlassClassificationCatalog.MulticlassClassificationTrainers * Microsoft.ML.Trainers.ITrainerEstimator<Microsoft.ML.ISingleFeaturePredictionTransformer<'Model>, 'Model (requires 'Model : null)> * string * bool * Microsoft.ML.IEstimator<Microsoft.ML.ISingleFeaturePredictionTransformer<Microsoft.ML.Calibrators.ICalibrator>> * int -> Microsoft.ML.Trainers.PairwiseCouplingTrainer (requires 'Model : null)
<Extension()>
Public Function PairwiseCoupling(Of TModel As Class) (catalog As MulticlassClassificationCatalog.MulticlassClassificationTrainers, binaryEstimator As ITrainerEstimator(Of ISingleFeaturePredictionTransformer(Of TModel), TModel), Optional labelColumnName As String = "Label", Optional imputeMissingLabelsAsNegative As Boolean = false, Optional calibrator As IEstimator(Of ISingleFeaturePredictionTransformer(Of ICalibrator)) = Nothing, Optional maximumCalibrationExampleCount As Integer = 1000000000) As PairwiseCouplingTrainer
Parámetros de tipo
- TModel
Tipo del modelo. Este parámetro de tipo normalmente se deducirá automáticamente de binaryEstimator.
Parámetros
Objeto instructor del catálogo de clasificación multiclase.
- binaryEstimator
- ITrainerEstimator<ISingleFeaturePredictionTransformer<TModel>,TModel>
Instancia de un binario ITrainerEstimator<TTransformer,TModel> utilizado como instructor base.
- labelColumnName
- String
Nombre de la columna de etiquetas.
- imputeMissingLabelsAsNegative
- Boolean
Si se deben tratar las etiquetas que faltan como etiquetas negativas, en lugar de mantenerlos ausentes.
- calibrator
- IEstimator<ISingleFeaturePredictionTransformer<ICalibrator>>
Calibrador. Si no se proporciona explícitamente un calibrador, el valor predeterminado será Microsoft.ML.Calibrators.PlattCalibratorTrainer
- maximumCalibrationExampleCount
- Int32
Número de instancias para entrenar el calibrador.
Devoluciones
Ejemplos
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML;
using Microsoft.ML.Data;
namespace Samples.Dynamic.Trainers.MulticlassClassification
{
public static class PairwiseCoupling
{
public static void Example()
{
// Create a new context for ML.NET operations. It can be used for
// exception tracking and logging, as a catalog of available operations
// and as the source of randomness. Setting the seed to a fixed number
// in this example to make outputs deterministic.
var mlContext = new MLContext(seed: 0);
// Create a list of training data points.
var dataPoints = GenerateRandomDataPoints(1000);
// Convert the list of data points to an IDataView object, which is
// consumable by ML.NET API.
var trainingData = mlContext.Data.LoadFromEnumerable(dataPoints);
// Define the trainer.
var pipeline =
// Convert the string labels into key types.
mlContext.Transforms.Conversion.MapValueToKey("Label")
// Apply PairwiseCoupling multiclass meta trainer on top of
// binary trainer.
.Append(mlContext.MulticlassClassification.Trainers
.PairwiseCoupling(
mlContext.BinaryClassification.Trainers.SdcaLogisticRegression()));
// Train the model.
var model = pipeline.Fit(trainingData);
// Create testing data. Use different random seed to make it different
// from training data.
var testData = mlContext.Data
.LoadFromEnumerable(GenerateRandomDataPoints(500, seed: 123));
// Run the model on test data set.
var transformedTestData = model.Transform(testData);
// Convert IDataView object to a list.
var predictions = mlContext.Data
.CreateEnumerable<Prediction>(transformedTestData,
reuseRowObject: false).ToList();
// Look at 5 predictions
foreach (var p in predictions.Take(5))
Console.WriteLine($"Label: {p.Label}, " +
$"Prediction: {p.PredictedLabel}");
// Expected output:
// Label: 1, Prediction: 1
// Label: 2, Prediction: 2
// Label: 3, Prediction: 2
// Label: 2, Prediction: 2
// Label: 3, Prediction: 2
// Evaluate the overall metrics
var metrics = mlContext.MulticlassClassification
.Evaluate(transformedTestData);
PrintMetrics(metrics);
// Expected output:
// Micro Accuracy: 0.90
// Macro Accuracy: 0.90
// Log Loss: 0.36
// Log Loss Reduction: 0.67
// Confusion table
// ||========================
// PREDICTED || 0 | 1 | 2 | Recall
// TRUTH ||========================
// 0 || 150 | 0 | 10 | 0.9375
// 1 || 0 | 166 | 11 | 0.9379
// 2 || 15 | 15 | 133 | 0.8160
// ||========================
// Precision ||0.9091 |0.9171 |0.8636 |
}
// Generates random uniform doubles in [-0.5, 0.5)
// range with labels 1, 2 or 3.
private static IEnumerable<DataPoint> GenerateRandomDataPoints(int count,
int seed = 0)
{
var random = new Random(seed);
float randomFloat() => (float)(random.NextDouble() - 0.5);
for (int i = 0; i < count; i++)
{
// Generate Labels that are integers 1, 2 or 3
var label = random.Next(1, 4);
yield return new DataPoint
{
Label = (uint)label,
// Create random features that are correlated with the label.
// The feature values are slightly increased by adding a
// constant multiple of label.
Features = Enumerable.Repeat(label, 20)
.Select(x => randomFloat() + label * 0.2f).ToArray()
};
}
}
// Example with label and 20 feature values. A data set is a collection of
// such examples.
private class DataPoint
{
public uint Label { get; set; }
[VectorType(20)]
public float[] Features { get; set; }
}
// Class used to capture predictions.
private class Prediction
{
// Original label.
public uint Label { get; set; }
// Predicted label from the trainer.
public uint PredictedLabel { get; set; }
}
// Pretty-print MulticlassClassificationMetrics objects.
public static void PrintMetrics(MulticlassClassificationMetrics metrics)
{
Console.WriteLine($"Micro Accuracy: {metrics.MicroAccuracy:F2}");
Console.WriteLine($"Macro Accuracy: {metrics.MacroAccuracy:F2}");
Console.WriteLine($"Log Loss: {metrics.LogLoss:F2}");
Console.WriteLine(
$"Log Loss Reduction: {metrics.LogLossReduction:F2}\n");
Console.WriteLine(metrics.ConfusionMatrix.GetFormattedConfusionTable());
}
}
}
Comentarios
En la estrategia de acoplamiento emparejado (PKPD), se usa un algoritmo de clasificación binaria para entrenar un clasificador para cada par de clases. A continuación, la predicción se realiza ejecutando estos clasificadores binarios y calculando una puntuación para cada clase contando cuántos de los clasificadores binarios lo predijeron. La predicción es la clase con la puntuación más alta.