Partager via


Démarrage rapide : Créer un modèle de classification d’images avec le portail Custom Vision

Important

Microsoft annonce la mise hors service planifiée du service Azure Custom Vision. Microsoft fournira une prise en charge complète de tous les clients Azure Custom Vision existants jusqu’au 25/25/2028. Pendant cette fenêtre de support, les clients sont encouragés à commencer à planifier et à exécuter leur transition vers d’autres solutions. Selon votre cas d’usage, nous vous recommandons les chemins d’accès suivants pour la transition :

  • Pour créer des modèles personnalisés à la fois pour la classification d’images et la détection d’objets, Azure Machine Learning AutoML offre la possibilité d’entraîner les deux types de modèles personnalisés à l’aide de techniques de Machine Learning classiques
  • En savoir plus sur Azure Machine Learning AutoML et découvrir comment il peut offrir une prise en charge de l’entraînement de modèle personnalisé.

Microsoft investit également dans des solutions basées sur l’IA générative qui augmentent la précision dans les scénarios personnalisés à l’aide de l’ingénierie rapide et d’autres techniques.

  • Pour utiliser des modèles génératifs, vous pouvez utiliser l’un des modèles disponibles dans le catalogue de modèles Foundry et créer votre propre solution pour une vision personnalisée.
  • Pour une solution de génération managée pour la classification d’images, Azure Content Understanding dans Foundry Tools (actuellement en préversion publique) offre la possibilité de créer des flux de travail de classification personnalisés. Il prend également en charge le traitement des données non structurées de n’importe quel type (image, documents, audio, vidéo) et extrait des insights structurés basés sur des formats prédéfinis ou définis par l’utilisateur.
  • Découvrez plus en détail les modèles Microsoft Foundry et Azure Content Understanding (préversion publique) et découvrez comment ils peuvent offrir d’autres chemins d’accès pour vos besoins personnalisés.

Pour obtenir des instructions plus détaillées sur la migration, consultez le Guide de migration d’Azure Custom Vision.

Ce guide de démarrage rapide explique comment utiliser le portail web Custom Vision pour créer un modèle de classification d’images. Une fois que vous avez créé un modèle, vous pouvez le tester avec de nouvelles images et l’intégrer finalement à votre propre application de reconnaissance d’images.

Prérequis

Créer des ressources Custom Vision

Pour utiliser le service Custom Vison, vous devez créer des ressources d’entraînement et de prédiction Custom Vision dans Azure. Dans le Portail Azure, utilisez la page de création de Custom Vision pour créer une ressource d’entraînement et une ressource de prédiction.

Création d'un projet

Accédez à la page web Custom Vision, puis connectez-vous avec le même compte que celui que vous avez utilisé pour vous connecter au portail Azure.

Capture d’écran montrant la page de connexion Custom Vision.

  1. Pour créer votre premier projet, sélectionnez New Project (Nouveau projet). La boîte de dialogue Créer un projet s’affiche.

    Capture d’écran de la boîte de dialogue Nouveau projet avec des champs pour le nom, la description et les domaines.

  2. Entrez un nom et une description pour le projet. Sélectionnez ensuite votre ressource de formation Custom Vision. Si votre compte connecté est associé à un compte Azure, le menu déroulant Ressource affiche toutes les ressources Azure compatibles.

    Remarque

    Si aucune ressource n’est disponible, vérifiez que vous êtes connecté à customvision.ai avec le même compte que celui que vous avez utilisé pour vous connecter au portail Azure. Vérifiez également que vous avez sélectionné le même répertoire dans le site web Custom Vision que l’annuaire dans le portail Azure où se trouvent vos ressources Custom Vision. Dans les deux sites, vous pouvez sélectionner votre répertoire à partir du menu déroulant de compte situé en haut à droite de l’écran.

  3. Sélectionnez Classification sous Project Types (Types de projets). Ensuite, sous Classification Types (Types de classifications), choisissez Multilabel (Multi-étiquette) ou Multiclass (Multiclasse), en fonction de votre cas d’utilisation. La classification multi-étiquette applique un nombre quelconque de vos étiquettes à une image (zéro ou plus), tandis que la classification multiclasse trie les images et les classe dans une seule catégorie (chaque image que vous soumettez se voit appliquer l’étiquette la plus probable). Vous pouvez changer ultérieurement le type de classification si vous le souhaitez.

  4. Sélectionnez ensuite un des domaines disponibles. Chaque domaine optimise le modèle pour des types spécifiques d’images, comme décrit dans le tableau suivant. Vous pouvez changer de domaine ultérieurement si vous le souhaitez.

    Domain Objectif
    Générique Optimisé pour un large éventail de tâches de classification d’images. Si aucun autre domaine n’est approprié, ou si vous hésitez sur le choix du domaine, sélectionnez le domaine Générique.
    Food (Nourriture) Optimisé pour les photographies de plats, tels que vous pouvez les voir dans un menu de restaurant. Si vous souhaitez classer des photographies de fruits ou de légumes distincts, utilisez le domaine Food (Nourriture).
    Landmarks (Monuments et sites) Optimisé pour les monuments et sites reconnaissables, naturels et artificiels. Ce domaine fonctionne mieux lorsque le monument ou le site est clairement visible dans la photographie. Ce domaine fonctionne même si le monument ou le site est légèrement masqué par des personnes placées devant lui.
    Retail (Commerce) Optimisé pour les images qui se trouvent dans des catalogues de vente ou sur des site Web commerciaux. Si vous souhaitez un classement de grande précision pour des robes, des pantalons et des chemises, utilisez ce domaine.
    Compact Domains (Domaines compacts) Optimisés en fonction des contraintes de la classification en temps réel sur les appareils mobiles. Les modèles générés par les domaines compacts sont exportables pour s’exécuter localement.
  5. Enfin, sélectionnez Create project (Créer le projet).

Choisir les images d’entraînement

Au minimum, vous devez utiliser au moins 30 images par étiquette dans le jeu d’entraînement initial. Vous devez aussi collecter quelques images supplémentaires pour tester votre modèle une fois qu’il est entraîné.

Pour entraîner votre modèle efficacement, utilisez des images avec une variété de visuels. Sélectionnez des images dont les éléments suivants varient :

  • angle de l’appareil photo
  • éclairage
  • background
  • style de visuel
  • sujet(s) individuel(s)/groupé(s)
  • taille
  • type

En outre, vérifiez que toutes vos images d’entraînement respectent les critères suivants :

  • être au format .jpg, .png, .bmp ou .gif
  • être d’une taille ne dépassant pas 6 Mo (4 Mo pour les images de prédiction)
  • ne pas avoir moins de 256 pixels sur le bord le plus court ; toute image dont ce bord est inférieur à 256 pixels est automatiquement mise à l’échelle par le service Custom Vision

Charger et étiqueter des images

Vous pouvez télécharger et étiqueter manuellement des images pour faciliter l’apprentissage du classifieur.

  1. Pour ajouter des images, sélectionnez Ajouter des images, puis Parcourir les fichiers locaux. Sélectionnez Open (Ouvrir) pour passer à l’étiquetage. La sélection des étiquettes est appliquée à l’ensemble d’un groupe d’images que vous téléchargez. Nous vous recommandons donc de télécharger les images dans des groupes distincts correspondant aux étiquettes que vous souhaitez leur attribuer. Il est également possible de modifier individuellement les étiquettes des images après leur téléchargement.

    Capture d’écran du contrôle Ajouter des images s’affiche en haut à gauche et sous la forme d’un bouton au centre inférieur.

  2. Pour créer une étiquette, entrez du texte dans le champ My Tags (Mes étiquettes) et appuyez sur Entrée. Si l’étiquette existe déjà, elle apparaît dans un menu déroulant. Dans un projet multi-étiquette, vous pouvez ajouter plusieurs étiquettes à vos images, mais dans un projet multiclasse, vous ne pouvez en ajouter qu’une seule. Pour terminer le chargement des images, utilisez le bouton Upload [nombre] files (Charger [nombre] fichiers).

    Capture d’écran de la page de chargement d’image avec un champ pour ajouter des balises.

  3. Une fois les images téléchargées, sélectionnez Terminé.

    Capture d’écran de la barre de progression montrant toutes les tâches terminées.

Pour charger un autre ensemble d’images, revenez en haut de cette section et répétez les étapes.

Former le classifieur

Pour former le classifieur, sélectionnez le bouton Train (Entraîner). Le classifieur utilise toutes les images pour créer un modèle qui identifie les qualités visuelles de chaque étiquette. Ce processus peut prendre plusieurs minutes.

Capture d’écran du bouton Train (Entraîner) en haut à droite de la barre d’outils de l’en-tête de la page web

Le processus d’entraînement ne doit durer que quelques minutes. Pendant ce temps, des informations sur le processus d’entraînement s’affichent dans l’onglet Performance.

Capture d’écran de la fenêtre du navigateur avec des détails d’entraînement dans la section principale.

Évaluer le classifieur

Une fois l’entraînement terminé, les performances du modèle sont estimées et affichées. Le service Custom Vision utilise les images que vous avez soumises pour l’entraînement afin de calculer la précision et le rappel. La précision et le rappel sont deux mesures différentes de l’efficacité d’un classifieur :

  • La précision indique la proportion des classifications identifiées qui étaient correctes. Par exemple, si le modèle a identifié 100 images comme étant des chiens et que 99 d’entre elles étaient effectivement des chiens, la précision est de 99 %.
  • Le rappel indique la proportion des classifications réelles qui ont été correctement identifiées. Par exemple, s’il y avait 100 images de pommes et que le modèle en a identifié 80 comme étant des pommes, le rappel est de 80 %.

Capture d’écran des résultats de l’entraînement montrant les taux de précision et de rappel globaux, ainsi que ceux de chaque mot clé dans le classifieur.

Seuil de probabilité

Notez le curseur Seuil de probabilité dans le volet gauche de l'onglet Performances. Il s'agit du niveau de confiance qu'une prédiction doit avoir pour être considérée comme correcte (pour le calcul de la précision et du rappel).

Quand vous interprétez des appels de prédiction avec un seuil de probabilité élevé, ils ont tendance à retourner des résultats avec une précision élevée au détriment des rappels ; les classifications détectées sont correctes, mais beaucoup restent non détectées. Un seuil de probabilité faible a l’effet opposé : la plupart des classifications réelles sont détectées, mais il y a plus de faux positifs dans ce jeu. En ayant ceci à l’esprit, vous devez définir le seuil de probabilité en fonction des besoins spécifiques de votre projet. Ultérieurement, lors de la réception des résultats de la prédiction côté client, vous devez utiliser la même valeur de seuil de probabilité que celle utilisée ici.

Gérer les itérations d’entraînement

Chaque fois que vous entraînez votre classifieur, vous créez une nouvelle itération avec ses propres métriques de performances mises à jour. Vous pouvez afficher toutes vos itérations dans le volet gauche de l’onglet Performance. Vous trouverez également le bouton Supprimer que vous pouvez utiliser pour supprimer une itération si elle est obsolète. Quand vous supprimez une itération, vous supprimez également toutes les images qui lui sont spécifiquement associées.

Pour savoir comment accéder à vos modèles entraînés par programmation, consultez Appeler l’API de prédiction.

Étape suivante

Dans ce guide de démarrage rapide, vous avez découvert comment créer et entraîner un modèle de classification d’images avec le portail web Custom Vision. Vous obtenez ensuite plus d’informations sur le processus itératif d’amélioration de votre modèle.