Partager via


Exemples de code jupyter notebook

Cet article présente des exemples d’extraits de code qui montrent comment interagir avec les données Microsoft Sentinel lake (préversion) à l’aide de notebooks Jupyter pour analyser les données de sécurité dans le lac de données Microsoft Sentinel. Ces exemples illustrent comment accéder et analyser des données à partir de différentes tables, telles que les journaux de connexion à l’ID Microsoft Entra, les informations de groupe et les événements réseau d’appareils. Les extraits de code sont conçus pour s’exécuter dans des notebooks Jupyter dans Visual Studio Code à l’aide de l’extension Microsoft Sentinel.

Pour exécuter ces exemples, vous devez disposer des autorisations requises et de Visual Studio Code installés avec l’extension Microsoft Sentinel. Pour plus d’informations, consultez les autorisations du lac de données de Microsoft Sentinel et l'utilisation de notebooks Jupyter avec le lac de données de Microsoft Sentinel.

Échec de l’analyse des tentatives de connexion

Cet exemple identifie les utilisateurs avec des tentatives de connexion ayant échoué. Pour ce faire, cet exemple de notebook traite les données de connexion à partir de deux tables :

  • SigninLogs
  • AADNonInteractiveUserSignInLogs

Le notebook effectue les étapes suivantes :

  1. Créez une fonction pour traiter les données des tables spécifiées, notamment :
    1. Chargez des données à partir des tables spécifiées dans des DataFrames.
    2. Analysez le champ JSON « Status » pour extraire « errorCode » et déterminer si chaque tentative de connexion a été une réussite ou un échec.
    3. Agréger les données pour compter le nombre d’échecs et de tentatives de connexion réussies pour chaque utilisateur.
    4. Filtrez les données pour inclure uniquement les utilisateurs ayant plus de 100 tentatives de connexion ayant échoué et au moins une tentative de connexion réussie.
    5. Triez les résultats en fonction du nombre de tentatives de connexion ayant échoué.
  2. Appelez la fonction pour les tables SigninLogs et AADNonInteractiveUserSignInLogs.
  3. Combinez les résultats des deux tables en un seul DataFrame.
  4. Convertissez le DataFrame en DataFrame Pandas.
  5. Filtrez le DataFrame Pandas pour afficher les 20 premiers utilisateurs ayant le plus grand nombre de tentatives de connexion ayant échoué.
  6. Créez un graphique à barres pour visualiser les utilisateurs ayant le plus grand nombre de tentatives de connexion ayant échoué.

Remarque

Ce notebook prend environ 10 minutes pour s’exécuter sur le pool volumineux en fonction du volume de données dans les tables de journaux

# Import necessary libraries
import matplotlib.pyplot as plt
from sentinel_lake.providers import MicrosoftSentinelProvider
from pyspark.sql.functions import col, when, count, from_json, desc
from pyspark.sql.types import StructType, StructField, StringType

data_provider = MicrosoftSentinelProvider(spark)

# Function to process data
def process_data(table_name,workspace_name):
    # Load data into DataFrame
    df = data_provider.read_table(table_name, workspace_name)
    
    # Define schema for parsing the 'Status' JSON field
    status_schema = StructType([StructField("errorCode", StringType(), True)])
    # Parse the 'Status' JSON field to extract 'errorCode'
    df = df.withColumn("Status_json", from_json(col("Status"), status_schema)) \
           .withColumn("ResultType", col("Status_json.errorCode"))
    # Define success codes
    success_codes = ["0", "50125", "50140", "70043", "70044"]
    
    # Determine FailureOrSuccess based on ResultType
    df = df.withColumn("FailureOrSuccess", when(col("ResultType").isin(success_codes), "Success").otherwise("Failure"))
    
    # Summarize FailureCount and SuccessCount
    df = df.groupBy("UserPrincipalName", "UserDisplayName", "IPAddress") \
           .agg(count(when(col("FailureOrSuccess") == "Failure", True)).alias("FailureCount"),
                count(when(col("FailureOrSuccess") == "Success", True)).alias("SuccessCount"))
    
    # Filter where FailureCount > 100 and SuccessCount > 0
    df = df.filter((col("FailureCount") > 100) & (col("SuccessCount") > 0))
    
    # Order by FailureCount descending
    df = df.orderBy(desc("FailureCount"))
         
    return df

# Process the tables to a common schema
workspace_name = "your-workspace-name"  # Replace with your actual workspace name
aad_signin = process_data("SigninLogs", workspace_name)
aad_non_int = process_data("AADNonInteractiveUserSignInLogs", workspace_name)

# Union the DataFrames
result_df = aad_signin.unionByName(aad_non_int)

# Show the result
result_df.show()

# Convert the Spark DataFrame to a Pandas DataFrame
result_pd_df = result_df.toPandas()

# Filter to show table with top 20 users with the highest failed sign-ins attempted
top_20_df = result_pd_df.nlargest(20, 'FailureCount')

# Create bar chart to show users by highest failed sign-ins attempted
plt.figure(figsize=(12, 6))
plt.bar(top_20_df['UserDisplayName'], top_20_df['FailureCount'], color='skyblue')
plt.xlabel('Users')
plt.ylabel('Number of Failed sign-ins')
plt.title('Top 20 Users with Failed sign-ins')
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
plt.show()  

La capture d’écran suivante montre un exemple de sortie du code ci-dessus, affichant les 20 premiers utilisateurs ayant le plus grand nombre de tentatives de connexion ayant échoué dans un format de graphique à barres.

Capture d’écran montrant un graphique à barres des utilisateurs ayant le plus grand nombre de tentatives de connexion ayant échoué.

Table de groupe Microsoft Entra ID pour le niveau Access Lake

L’exemple de code suivant montre comment accéder à la EntraGroups table dans le lac de données Microsoft Sentinel. Il affiche différents champs tels que displayName, , groupTypes, mailmailNickname, description, et tenantId.

from sentinel_lake.providers import MicrosoftSentinelProvider
data_provider = MicrosoftSentinelProvider(spark)
 
table_name = "EntraGroups"  
df = data_provider.read_table(table_name)  
df.select("displayName", "groupTypes", "mail", "mailNickname", "description", "tenantId").show(100, truncate=False)   

La capture d’écran suivante montre un exemple de sortie du code ci-dessus, affichant les informations du groupe Microsoft Entra ID dans un format de trame de données.

Capture d’écran montrant l’exemple de résultat de la table de groupe Microsoft Entra ID.

Accéder aux journaux de connexion de l'identifiant Microsoft Entra pour un utilisateur spécifique

L’exemple de code suivant montre comment accéder à la table Microsoft Entra ID SigninLogs et filtrer les résultats d’un utilisateur spécifique. Il récupère différents champs tels que UserDisplayName, UserPrincipalName, UserId, etc.

from sentinel_lake.providers import MicrosoftSentinelProvider
data_provider = MicrosoftSentinelProvider(spark)
 
table_name = "SigninLogs"  
workspace_name = "your-workspace-name"  # Replace with your actual workspace name
df = data_provider.read_table(table_name, workspace_name)  
df.select("UserDisplayName", "UserPrincipalName", "UserId", "CorrelationId", "UserType", 
 "ResourceTenantId", "RiskLevelDuringSignIn", "ResourceProvider", "IPAddress", "AppId", "AADTenantId")\
    .filter(df.UserPrincipalName == "bploni5@contoso.com")\
    .show(100, truncate=False) 

Examiner les emplacements de connexion

L’exemple de code suivant montre comment extraire et afficher des emplacements de connexion à partir de la table Microsoft Entra ID SigninLogs. Elle utilise la from_json fonction pour analyser la structure JSON du LocationDetails champ, ce qui vous permet d’accéder à des attributs d’emplacement spécifiques tels que la ville, l’état et le pays ou la région.

from sentinel_lake.providers import MicrosoftSentinelProvider
from pyspark.sql.functions import from_json, col  
from pyspark.sql.types import StructType, StructField, StringType  
 
data_provider = MicrosoftSentinelProvider(spark)  
workspace_name = "your-workspace-name"  # Replace with your actual workspace name
table_name = "SigninLogs"  
df = data_provider.read_table(table_name, workspace_name)  
 
location_schema = StructType([  
  StructField("city", StringType(), True),  
  StructField("state", StringType(), True),  
  StructField("countryOrRegion", StringType(), True)  
])  
 
# Extract location details from JSON  
df = df.withColumn("LocationDetails", from_json(col("LocationDetails"), location_schema))  
df = df.select("UserPrincipalName", "CreatedDateTime", "IPAddress", 
 "LocationDetails.city", "LocationDetails.state", "LocationDetails.countryOrRegion")  
 
sign_in_locations_df = df.orderBy("CreatedDateTime", ascending=False)  
sign_in_locations_df.show(100, truncate=False) 

Connexions à partir de pays inhabituels

L’exemple de code suivant montre comment identifier les connexions à partir de pays qui ne font pas partie du modèle de connexion classique d’un utilisateur.

from sentinel_lake.providers import MicrosoftSentinelProvider
from pyspark.sql.functions import from_json, col
from pyspark.sql.types import StructType, StructField, StringType

data_provider = MicrosoftSentinelProvider(spark)
table_name = "signinlogs"
workspace_name = "your-workspace-name"  # Replace with your actual workspace name
df = data_provider.read_table(table_name, workspace_name)

location_schema = StructType([
    StructField("city", StringType(), True),
    StructField("state", StringType(), True),
    StructField("countryOrRegion", StringType(), True)
])

# Extract location details from JSON
df = df.withColumn("LocationDetails", from_json(col("LocationDetails"), location_schema))
df = df.select(
    "UserPrincipalName",
    "CreatedDateTime",
    "IPAddress",
    "LocationDetails.city",
    "LocationDetails.state",
    "LocationDetails.countryOrRegion"
)

sign_in_locations_df = df.orderBy("CreatedDateTime", ascending=False)
sign_in_locations_df.show(100, truncate=False)

Attaque par force brute en raison de plusieurs tentatives de connexion échouées

Identifiez les attaques par force brute potentielle en analysant les journaux de connexion utilisateur pour les comptes avec un nombre élevé de tentatives de connexion ayant échoué.

from sentinel_lake.providers import MicrosoftSentinelProvider
from pyspark.sql.functions import col, when, count, from_json, desc
from pyspark.sql.types import StructType, StructField, StringType

data_provider = MicrosoftSentinelProvider(spark)

def process_data(table_name, workspace_name):
    df = data_provider.read_table(table_name, workspace_name)
    status_schema = StructType([StructField("errorCode", StringType(), True)])
    df = df.withColumn("Status_json", from_json(col("Status"), status_schema)) \
           .withColumn("ResultType", col("Status_json.errorCode"))
    success_codes = ["0", "50125", "50140", "70043", "70044"]
    df = df.withColumn("FailureOrSuccess", when(col("ResultType").isin(success_codes), "Success").otherwise("Failure"))
    df = df.groupBy("UserPrincipalName", "UserDisplayName", "IPAddress") \
           .agg(count(when(col("FailureOrSuccess") == "Failure", True)).alias("FailureCount"),
                count(when(col("FailureOrSuccess") == "Success", True)).alias("SuccessCount"))
    # Lower the brute force threshold to >10 failures and remove the success requirement
    df = df.filter(col("FailureCount") > 10)
    df = df.orderBy(desc("FailureCount"))
    df = df.withColumn("AccountCustomEntity", col("UserPrincipalName")) \
           .withColumn("IPCustomEntity", col("IPAddress"))
    return df
workspace_name = "your-workspace-name"  # Replace with your actual workspace name
aad_signin = process_data("SigninLogs", workspace_name)
aad_non_int = process_data("AADNonInteractiveUserSignInLogs",workspace_name)
result_df = aad_signin.unionByName(aad_non_int)
result_df.show()

Détecter les tentatives de mouvement latéral

Utilisez DeviceNetworkEvents pour identifier les connexions IP internes suspectes qui peuvent signaler un mouvement latéral, par exemple un trafic SMB/RDP anormal entre les points de terminaison.

from sentinel_lake.providers import MicrosoftSentinelProvider
from pyspark.sql.functions import col, count, countDistinct, desc

deviceNetworkEventTable = "DeviceNetworkEvents"
workspace_name = "<your-workspace-name>"  # Replace with your actual workspace name
data_provider = MicrosoftSentinelProvider(spark)
device_network_events = data_provider.read_table(deviceNetworkEventTable, workspace_name)

# Define internal IP address range (example: 10.x.x.x, 192.168.x.x, 172.16.x.x - 172.31.x.x)
internal_ip_regex = r"^(10\.\d{1,3}\.\d{1,3}\.\d{1,3}|192\.168\.\d{1,3}\.\d{1,3}|172\.(1[6-9]|2[0-9]|3[0-1])\.\d{1,3}\.\d{1,3})$"

# Filter for internal-to-internal connections
internal_connections = device_network_events.filter(
    col("RemoteIP").rlike(internal_ip_regex) &
    col("LocalIP").rlike(internal_ip_regex)
)

# Group by source and destination, count connections
suspicious_lateral = (
    internal_connections.groupBy("LocalIP", "RemoteIP", "InitiatingProcessAccountName")
    .agg(count("*").alias("ConnectionCount"))
    .filter(col("ConnectionCount") > 10)  # Threshold can be adjusted
    .orderBy(desc("ConnectionCount"))
)
suspicious_lateral.show()

Découvrir les outils de vidage des informations d’identification

Interrogez DeviceProcessEvents pour rechercher des processus tels que mimikatz.exe ou une exécution inattendue d’un accès lsass.exe, ce qui peut indiquer la collecte des informations d’identification.

from sentinel_lake.providers import MicrosoftSentinelProvider
from pyspark.sql.functions import col, lower

workspace_id = "<your-workspace-name>"
device_process_table = "DeviceProcessEvents"

data_provider = MicrosoftSentinelProvider(spark)
process_events = data_provider.read_table(device_process_table, workspace_id)

# Look for known credential dumping tools and suspicious access to lsass.exe
suspicious_processes = process_events.filter(
    (lower(col("FileName")).rlike("mimikatz|procdump|lsassy|nanodump|sekurlsa|dumpert")) |
    (
        (lower(col("FileName")) == "lsass.exe") &
        (~lower(col("InitiatingProcessFileName")).isin(["services.exe", "wininit.exe", "taskmgr.exe"]))
    )
)

suspicious_processes.select(
    "Timestamp",
    "DeviceName",
    "AccountName",
    "FileName",
    "FolderPath",
    "InitiatingProcessFileName",
    "InitiatingProcessCommandLine"
).show(50, truncate=False)

Corrélation de l’activité USB avec accès aux fichiers sensibles

Combinez DeviceEvents et DeviceFileEvents dans un notebook pour exposer des modèles d’exfiltration de données potentiels. Ajoutez des visualisations pour afficher les appareils, les utilisateurs ou les fichiers impliqués, et quand.

from sentinel_lake.providers import MicrosoftSentinelProvider
from pyspark.sql.functions import col, lower, to_timestamp, expr
import matplotlib.pyplot as plt

data_provider = MicrosoftSentinelProvider(spark)
workspace_id = “<your-workspace-id>”

# Load DeviceEvents and DeviceFileEvents tables
device_events = data_provider.read_table("DeviceEvents", workspace_id)
device_file_events = data_provider.read_table("DeviceFileEvents", workspace_id)
device_info = data_provider.read_table("DeviceInfo", workspace_id)

# Filter for USB device activity (adjust 'ActionType' or 'AdditionalFields' as needed)
usb_events = device_events.filter(
    lower(col("ActionType")).rlike("usb|removable|storage")
)

# Filter for sensitive file access (e.g., files in Documents, Desktop, or with sensitive extensions)
sensitive_file_events = device_file_events.filter(
    lower(col("FolderPath")).rlike("documents|desktop|finance|confidential|secret|sensitive") |
    lower(col("FileName")).rlike(r"\.(docx|xlsx|pdf|csv|zip|7z|rar|pst|bak)$")
)

# Convert timestamps
usb_events = usb_events.withColumn("EventTime", to_timestamp(col("Timestamp")))
sensitive_file_events = sensitive_file_events.withColumn("FileEventTime", to_timestamp(col("Timestamp")))

# Join on DeviceId and time proximity (within 10 minutes) using expr for column operations
joined = usb_events.join(
    sensitive_file_events,
    (usb_events.DeviceId == sensitive_file_events.DeviceId) &
    (expr("abs(unix_timestamp(EventTime) - unix_timestamp(FileEventTime)) <= 600")),
    "inner"
) \
.join(device_info, usb_events.DeviceId == device_info.DeviceId, "inner")


# Select relevant columns
correlated = joined.select(
    device_info.DeviceName,
    usb_events.DeviceId,
    usb_events.AccountName,
    usb_events.EventTime.alias("USBEventTime"),
    sensitive_file_events.FileName,
    sensitive_file_events.FolderPath,
    sensitive_file_events.FileEventTime
)

correlated.show(50, truncate=False)

# Visualization: Number of sensitive file accesses per device
pd_df = correlated.toPandas()
if not pd_df.empty:
    plt.figure(figsize=(12, 6))
    pd_df.groupby('DeviceName').size().sort_values(ascending=False).head(10).plot(kind='bar')
    plt.title('Top Devices with Correlated USB and Sensitive File Access Events')
    plt.xlabel('DeviceName')
    plt.ylabel('Number of Events')
    plt.tight_layout()
    plt.show()
else:
    print("No correlated USB and sensitive file access events found in the selected period.")

Détection du comportement de la balise

Détectez le commandement et le contrôle potentiels en regroupant les connexions sortantes régulières à des volumes d’octets faibles sur de longues durées.

# Setup
from pyspark.sql.functions import col, to_timestamp, window, count, avg, stddev, hour, date_trunc
from sentinel_lake.providers import MicrosoftSentinelProvider 
import matplotlib.pyplot as plt
import pandas as pd

data_provider = MicrosoftSentinelProvider(spark)
device_net_events = "DeviceNetworkEvents"
workspace_id = "<your-workspace-id>"

network_df = data_provider.read_table(device_net_events, workspace_id)

# Add hour bucket to group by frequency
network_df = network_df.withColumn("HourBucket", date_trunc("hour", col("Timestamp")))

# Group by device and IP to count hourly traffic
hourly_traffic = network_df.groupBy("DeviceName", "RemoteIP", "HourBucket") \
    .agg(count("*").alias("ConnectionCount"))

# Count number of hours this IP talks to device
stats_df = hourly_traffic.groupBy("DeviceName", "RemoteIP") \
    .agg(
        count("*").alias("HoursSeen"),
        avg("ConnectionCount").alias("AvgConnPerHour"),
        stddev("ConnectionCount").alias("StdDevConnPerHour")
    )

# Filter beacon-like traffic: low stddev, repeated presence
beacon_candidates = stats_df.filter(
    (col("HoursSeen") > 10) &
    (col("AvgConnPerHour") < 5) &
    (col("StdDevConnPerHour") < 1.0)
)

beacon_candidates.show(truncate=False)

# Choose one Device + IP pair to plot
example = beacon_candidates.limit(1).collect()[0]
example_device = example["DeviceName"]
example_ip = example["RemoteIP"]

# Filter hourly traffic for that pair
example_df = hourly_traffic.filter(
    (col("DeviceName") == example_device) & 
    (col("RemoteIP") == example_ip)
).orderBy("HourBucket")

# Convert to Pandas and plot
example_pd = example_df.toPandas()
example_pd["HourBucket"] = pd.to_datetime(example_pd["HourBucket"])

plt.figure(figsize=(12, 5))
plt.plot(example_pd["HourBucket"], example_pd["ConnectionCount"], marker="o", linestyle="-")
plt.title(f"Outbound Connections – {example_device} to {example_ip}")
plt.xlabel("Time (Hourly)")
plt.ylabel("Connection Count")
plt.grid(True)
plt.tight_layout()
plt.show()