Remarque
L’accès à cette page nécessite une autorisation. Vous pouvez essayer de vous connecter ou de modifier des répertoires.
L’accès à cette page nécessite une autorisation. Vous pouvez essayer de modifier des répertoires.
L’exemple suivant montre comment utiliser un System.Threading.SpinWait objet pour implémenter une opération d’attente en deux phases. Dans la première phase, l’objet de synchronisation, un Latch, tourne pendant quelques cycles pendant qu’il vérifie si le verrou est disponible. Dans la deuxième phase, si le verrou devient disponible, la Wait méthode retourne sans utiliser la System.Threading.ManualResetEvent méthode pour effectuer son attente ; sinon, Wait elle effectue l’attente.
Exemple :
Cet exemple montre une implémentation très basique d’une primitive de synchronisation Latch. Vous pouvez utiliser cette structure de données lorsque les temps d’attente sont censés être très courts. Cet exemple est uniquement à des fins de démonstration. Si vous avez besoin de fonctionnalités de type de verrou dans votre programme, envisagez d’utiliser System.Threading.ManualResetEventSlim.
#define LOGGING
using System;
using System.Diagnostics;
using System.Threading;
using System.Threading.Tasks;
class Latch
{
private object latchLock = new object();
// 0 = unset, 1 = set.
private int m_state = 0;
private volatile int totalKernelWaits = 0;
// Block threads waiting for ManualResetEvent.
private ManualResetEvent m_ev = new ManualResetEvent(false);
#if LOGGING
// For fast logging with minimal impact on latch behavior.
// Spin counts greater than 20 might be encountered depending on machine config.
private long[] spinCountLog = new long[20];
public void DisplayLog()
{
for (int i = 0; i < spinCountLog.Length; i++)
{
Console.WriteLine($"Wait succeeded with spin count of {i} on {spinCountLog[i]:N0} attempts");
}
Console.WriteLine($"Wait used the kernel event on {totalKernelWaits:N0} attempts.");
Console.WriteLine("Logging complete");
}
#endif
public void Set()
{
lock(latchLock) {
m_state = 1;
m_ev.Set();
}
}
public void Wait()
{
Trace.WriteLine("Wait timeout infinite");
Wait(Timeout.Infinite);
}
public bool Wait(int timeout)
{
SpinWait spinner = new SpinWait();
Stopwatch watch;
while (m_state == 0)
{
// Lazily allocate and start stopwatch to track timeout.
watch = Stopwatch.StartNew();
// Spin only until the SpinWait is ready
// to initiate its own context switch.
if (!spinner.NextSpinWillYield)
{
spinner.SpinOnce();
}
// Rather than let SpinWait do a context switch now,
// we initiate the kernel Wait operation, because
// we plan on doing this anyway.
else
{
Interlocked.Increment(ref totalKernelWaits);
// Account for elapsed time.
long realTimeout = timeout - watch.ElapsedMilliseconds;
// Do the wait.
if (realTimeout <= 0 || !m_ev.WaitOne((int)realTimeout))
{
Trace.WriteLine("wait timed out.");
return false;
}
}
}
#if LOGGING
Interlocked.Increment(ref spinCountLog[spinner.Count]);
#endif
// Take the latch.
Interlocked.Exchange(ref m_state, 0);
return true;
}
}
class Example
{
static Latch latch = new Latch();
static int count = 2;
static CancellationTokenSource cts = new CancellationTokenSource();
static void TestMethod()
{
while (!cts.IsCancellationRequested)
{
// Obtain the latch.
if (latch.Wait(50))
{
// Do the work. Here we vary the workload a slight amount
// to help cause varying spin counts in latch.
double d = 0;
if (count % 2 != 0) {
d = Math.Sqrt(count);
}
Interlocked.Increment(ref count);
// Release the latch.
latch.Set();
}
}
}
static void Main()
{
// Demonstrate latch with a simple scenario: multiple
// threads updating a shared integer. Both operations
// are relatively fast, which enables the latch to
// demonstrate successful waits by spinning only.
latch.Set();
// UI thread. Press 'c' to cancel the loop.
Task.Factory.StartNew(() =>
{
Console.WriteLine("Press 'c' to cancel.");
if (Console.ReadKey(true).KeyChar == 'c') {
cts.Cancel();
}
});
Parallel.Invoke( () => TestMethod(),
() => TestMethod(),
() => TestMethod() );
#if LOGGING
latch.DisplayLog();
if (cts != null) cts.Dispose();
#endif
}
}
#Const LOGGING = 1
Imports System.Diagnostics
Imports System.Threading
Imports System.Threading.Tasks
Class Latch
Private latchLock As New Object()
' 0 = unset, 1 = set.
Private m_state As Integer = 0
Private totalKernelWaits As Integer = 0
' Block threads waiting for ManualResetEvent.
Private m_ev = New ManualResetEvent(False)
#If LOGGING Then
' For fast logging with minimal impact on latch behavior.
' Spin counts greater than 20 might be encountered depending on machine config.
Dim spinCountLog(19) As Long
Public Sub DisplayLog()
For i As Integer = 0 To spinCountLog.Length - 1
Console.WriteLine("Wait succeeded with spin count of {0} on {1:N0} attempts",
i, spinCountLog(i))
Next
Console.WriteLine("Wait used the kernel event on {0:N0} attempts.",
totalKernelWaits)
Console.WriteLine("Logging complete")
End Sub
#End If
Public Sub SetLatch()
SyncLock (latchLock)
m_state = 1
m_ev.Set()
End SyncLock
End Sub
Public Sub Wait()
Trace.WriteLine("Wait timeout infinite")
Wait(Timeout.Infinite)
End Sub
Public Function Wait(ByVal timeout As Integer) As Boolean
' Allocated on the stack.
Dim spinner = New SpinWait()
Dim watch As Stopwatch
While (m_state = 0)
' Lazily allocate and start stopwatch to track timeout.
watch = Stopwatch.StartNew()
' Spin only until the SpinWait is ready
' to initiate its own context switch.
If Not spinner.NextSpinWillYield Then
spinner.SpinOnce()
' Rather than let SpinWait do a context switch now,
' we initiate the kernel Wait operation, because
' we plan on doing this anyway.
Else
Interlocked.Increment(totalKernelWaits)
' Account for elapsed time.
Dim realTimeout As Long = timeout - watch.ElapsedMilliseconds
' Do the wait.
If realTimeout <= 0 OrElse Not m_ev.WaitOne(realTimeout) Then
Trace.WriteLine("wait timed out.")
Return False
End If
End If
End While
#If LOGGING Then
Interlocked.Increment(spinCountLog(spinner.Count))
#End If
' Take the latch.
Interlocked.Exchange(m_state, 0)
Return True
End Function
End Class
Class Program
Shared latch = New Latch()
Shared count As Integer = 2
Shared cts = New CancellationTokenSource()
Shared lockObj As New Object()
Shared Sub TestMethod()
While (Not cts.IsCancellationRequested)
' Obtain the latch.
If (latch.Wait(50)) Then
' Do the work. Here we vary the workload a slight amount
' to help cause varying spin counts in latch.
Dim d As Double = 0
If (count Mod 2 <> 0) Then
d = Math.Sqrt(count)
End If
SyncLock (lockObj)
If count = Int32.MaxValue Then count = 0
count += 1
End SyncLock
' Release the latch.
latch.SetLatch()
End If
End While
End Sub
Shared Sub Main()
' Demonstrate latch with a simple scenario:
' two threads updating a shared integer and
' accessing a shared StringBuilder. Both operations
' are relatively fast, which enables the latch to
' demonstrate successful waits by spinning only.
latch.SetLatch()
' UI thread. Press 'c' to cancel the loop.
Task.Factory.StartNew(Sub()
Console.WriteLine("Press 'c' to cancel.")
If (Console.ReadKey(True).KeyChar = "c"c) Then
cts.Cancel()
End If
End Sub)
Parallel.Invoke(
Sub() TestMethod(),
Sub() TestMethod(),
Sub() TestMethod()
)
#If LOGGING Then
latch.DisplayLog()
#End If
If cts IsNot Nothing Then cts.Dispose()
End Sub
End Class
Le verrou utilise l’objet SpinWait pour tourner sur place uniquement jusqu’à ce que le prochain appel à SpinOnce provoque la transmission de la tranche horaire du thread par le SpinWait. À ce stade, le verrou provoque son propre changement de contexte en appelant WaitOne sur le ManualResetEvent et en passant le reste de la valeur de délai d’attente.
La sortie de la journalisation indique la fréquence à laquelle le verrou a pu augmenter les performances en acquérant le verrou sans utiliser ManualResetEvent.