Nuta
Dostęp do tej strony wymaga autoryzacji. Możesz spróbować się zalogować lub zmienić katalog.
Dostęp do tej strony wymaga autoryzacji. Możesz spróbować zmienić katalogi.
Dotyczy:✅ Inżynieria danych i nauka o danych w usłudze Microsoft Fabric
Dowiedz się, jak przesyłać zadania sesji Spark przy użyciu interfejsu API usługi Livy dla Fabric Data Engineering.
Wymagania wstępne
Pojemność Premium lub pojemność próbna z Lakehouse
Klient zdalny, taki jak Visual Studio Code z Jupyter Notebooks, PySpark i biblioteką Microsoft Authentication Library (MSAL) dla Python
Albo token aplikacji Entra firmy Microsoft. Rejestrowanie aplikacji za pomocą platformy tożsamości firmy Microsoft
Lub token spN firmy Microsoft Entra. Dodawanie poświadczeń aplikacji i zarządzanie nimi w usłudze Microsoft Entra
Niektóre dane w lakehouse, w tym przykładzie użyto pliku Parquet green_tripdata_2022_08 z NYC Taxi & Limousine Commission, załadowanego do lakehouse.
Interfejs API usługi Livy definiuje ujednolicony punkt końcowy dla operacji. Zastąp symbole zastępcze {Entra_TenantID}, {Entra_ClientID}, {Fabric_WorkspaceID}, {Fabric_LakehouseID} odpowiednimi wartościami, korzystając z przykładów w tym artykule.
Konfigurowanie programu Visual Studio Code dla sesji interfejsu API usługi Livy
Wybierz Ustawienia Lakehouse w usłudze Fabric Lakehouse.
Przejdź do sekcji Livy endpoint.
Skopiuj ciąg połączenia zadania sesji (pierwsze czerwone pole na obrazie) do swojego kodu.
Przejdź do Centrum administracyjne Microsoft Entra i skopiuj identyfikator aplikacji (klienta) i identyfikator katalogu (dzierżawcy) do swojego kodu.
Uwierzytelnij sesję Spark interfejsu API Livy przy użyciu tokenu użytkownika Microsoft Entra lub tokenu SPN Microsoft Entra.
Uwierzytelnianie sesji interfejsu API Livy dla Sparka przy użyciu tokenu SPN z Microsoft Entra
.ipynbUtwórz notes w programie Visual Studio Code i wstaw następujący kod.import sys from msal import ConfidentialClientApplication # Configuration - Replace with your actual values tenant_id = "Entra_TenantID" # Microsoft Entra tenant ID client_id = "Entra_ClientID" # Service Principal Application ID # Certificate paths - Update these paths to your certificate files certificate_path = "PATH_TO_YOUR_CERTIFICATE.pem" # Public certificate file private_key_path = "PATH_TO_YOUR_PRIVATE_KEY.pem" # Private key file certificate_thumbprint = "YOUR_CERTIFICATE_THUMBPRINT" # Certificate thumbprint # OAuth settings audience = "https://analysis.windows.net/powerbi/api/.default" authority = f"https://login.windows.net/{tenant_id}" def get_access_token(client_id, audience, authority, certificate_path, private_key_path, certificate_thumbprint=None): """ Get an app-only access token for a Service Principal using OAuth 2.0 client credentials flow. This function uses certificate-based authentication which is more secure than client secrets. Args: client_id (str): The Service Principal's client ID audience (str): The audience for the token (resource scope) authority (str): The OAuth authority URL certificate_path (str): Path to the certificate file (.pem format) private_key_path (str): Path to the private key file (.pem format) certificate_thumbprint (str): Certificate thumbprint (optional but recommended) Returns: str: The access token for API authentication Raises: Exception: If token acquisition fails """ try: # Read the certificate from PEM file with open(certificate_path, "r", encoding="utf-8") as f: certificate_pem = f.read() # Read the private key from PEM file with open(private_key_path, "r", encoding="utf-8") as f: private_key_pem = f.read() # Create the confidential client application app = ConfidentialClientApplication( client_id=client_id, authority=authority, client_credential={ "private_key": private_key_pem, "thumbprint": certificate_thumbprint, "certificate": certificate_pem } ) # Acquire token using client credentials flow token_response = app.acquire_token_for_client(scopes=[audience]) if "access_token" in token_response: print("Successfully acquired access token") return token_response["access_token"] else: raise Exception(f"Failed to retrieve token: {token_response.get('error_description', 'Unknown error')}") except FileNotFoundError as e: print(f"Certificate file not found: {e}") sys.exit(1) except Exception as e: print(f"Error retrieving token: {e}", file=sys.stderr) sys.exit(1) # Get the access token token = get_access_token(client_id, audience, authority, certificate_path, private_key_path, certificate_thumbprint)Uruchom komórkę notesu. Powinien zostać zwrócony token Entra firmy Microsoft.
Uwierzytelnianie sesji Spark interfejsu API Livy przy użyciu tokenu użytkownika Microsoft Entra
.ipynbUtwórz notes w programie Visual Studio Code i wstaw następujący kod.from msal import PublicClientApplication import requests import time # Configuration - Replace with your actual values tenant_id = "Entra_TenantID" # Microsoft Entra tenant ID client_id = "Entra_ClientID" # Application ID (can be the same as above or different) # Required scopes for Microsoft Fabric API access scopes = [ "https://api.fabric.microsoft.com/Lakehouse.Execute.All", # Execute operations in lakehouses "https://api.fabric.microsoft.com/Lakehouse.Read.All", # Read lakehouse metadata "https://api.fabric.microsoft.com/Item.ReadWrite.All", # Read/write fabric items "https://api.fabric.microsoft.com/Workspace.ReadWrite.All", # Access workspace operations "https://api.fabric.microsoft.com/Code.AccessStorage.All", # Access storage from code "https://api.fabric.microsoft.com/Code.AccessAzureKeyvault.All", # Access Azure Key Vault "https://api.fabric.microsoft.com/Code.AccessAzureDataExplorer.All", # Access Azure Data Explorer "https://api.fabric.microsoft.com/Code.AccessAzureDataLake.All", # Access Azure Data Lake "https://api.fabric.microsoft.com/Code.AccessFabric.All" # General Fabric access ] def get_access_token(tenant_id, client_id, scopes): """ Get an access token using interactive authentication. This method will open a browser window for user authentication. Args: tenant_id (str): The Microsoft Entra tenant ID client_id (str): The application client ID scopes (list): List of required permission scopes Returns: str: The access token, or None if authentication fails """ app = PublicClientApplication( client_id, authority=f"https://login.microsoftonline.com/{tenant_id}" ) print("Opening browser for interactive authentication...") token_response = app.acquire_token_interactive(scopes=scopes) if "access_token" in token_response: print("Successfully authenticated") return token_response["access_token"] else: print(f"Authentication failed: {token_response.get('error_description', 'Unknown error')}") return None # Uncomment the lines below to use interactive authentication token = get_access_token(tenant_id, client_id, scopes) print("Access token acquired via interactive login")Uruchom komórkę notatnika. Powinien zostać zwrócony token Entra firmy Microsoft.
Tworzenie sesji platformy Spark interfejsu API usługi Livy
Dodaj kolejną komórkę notesu i wstaw ten kod.
import json import requests api_base_url = "https://api.fabric.microsoft.com/" # Base URL for Fabric APIs # Fabric Resource IDs - Replace with your workspace and lakehouse IDs workspace_id = "Fabric_WorkspaceID" lakehouse_id = "Fabric_LakehouseID" # Construct the Livy API session URL # URL pattern: {base_url}/v1/workspaces/{workspace_id}/lakehouses/{lakehouse_id}/livyapi/versions/{api_version}/sessions livy_api_session_url = (f"{api_base_url}v1/workspaces/{workspace_id}/lakehouses/{lakehouse_id}/" f"livyapi/versions/2023-12-01/sessions") # Set up authentication headers headers = {"Authorization": f"Bearer {token}"} print(f"Livy API URL: {livy_api_session_url}") print("Creating Livy session...") try: # Create a new Livy session with default configuration create_livy_session = requests.post(livy_api_session_url, headers=headers, json={}) # Check if the request was successful if create_livy_session.status_code == 200: session_info = create_livy_session.json() print('Livy session creation request submitted successfully') print(f'Session Info: {json.dumps(session_info, indent=2)}') # Extract session ID for future operations livy_session_id = session_info['id'] livy_session_url = f"{livy_api_session_url}/{livy_session_id}" print(f"Session ID: {livy_session_id}") print(f"Session URL: {livy_session_url}") else: print(f"Failed to create session. Status code: {create_livy_session.status_code}") print(f"Response: {create_livy_session.text}") except requests.exceptions.RequestException as e: print(f"Network error occurred: {e}") except json.JSONDecodeError as e: print(f"JSON decode error: {e}") print(f"Response text: {create_livy_session.text}") except Exception as e: print(f"Unexpected error: {e}")Uruchom komórkę notesu. Powinien zostać wyświetlony jeden wiersz wydrukowany podczas tworzenia sesji usługi Livy.
Możesz sprawdzić, czy sesja usługi Livy została utworzona, korzystając z opcji [Wyświetl swoje zadania w Centrum monitorowania](#View your jobs in the Monitoring hub).
Integracja ze środowiskami Fabric
Domyślnie ta sesja interfejsu API usługi Livy działa na domyślnej puli początkowej dla obszaru roboczego. Alternatywnie możesz użyć środowisk Fabric Tworzenie, konfigurowanie i używanie środowiska w usłudze Microsoft Fabric, aby dostosować pulę Spark, z której sesja interfejsu API Livy korzysta do tych zadań Spark. Aby użyć środowiska Fabric, zaktualizuj poprzednią komórkę notesu za pomocą tego obiektu JSON.
create_livy_session = requests.post(livy_base_url, headers = headers, json = {
"conf" : {
"spark.fabric.environmentDetails" : "{\"id\" : \""EnvironmentID""}"}
}
)
Przesyłanie instrukcji spark.sql przy użyciu sesji usługi Livy API Spark
Dodaj kolejną komórkę notesu i wstaw ten kod.
# call get session API import time table_name = "green_tripdata_2022" print("Checking session status...") # Get current session status get_session_response = requests.get(livy_session_url, headers=headers) session_status = get_session_response.json() print(f"Current session state: {session_status['state']}") # Wait for session to become idle (ready to accept statements) print("Waiting for session to become idle...") while session_status["state"] != "idle": print(f" Session state: {session_status['state']} - waiting 5 seconds...") time.sleep(5) get_session_response = requests.get(livy_session_url, headers=headers) session_status = get_session_response.json() print("Session is now idle and ready to accept statements") # Execute a Spark SQL statement execute_statement_url = f"{livy_session_url}/statements" # Define your Spark SQL query - Replace with your actual table and query payload_data = { "code": "spark.sql(\"SELECT * FROM {table_name} WHERE column_name = 'some_value' LIMIT 10\").show()", "kind": "spark" # Type of code (spark, pyspark, sql, etc.) } print("Submitting Spark SQL statement...") print(f"Query: {payload_data['code']}") try: # Submit the statement for execution execute_statement_response = requests.post(execute_statement_url, headers=headers, json=payload_data) if execute_statement_response.status_code == 200: statement_info = execute_statement_response.json() print('Statement submitted successfully') print(f"Statement Info: {json.dumps(statement_info, indent=2)}") # Get statement ID for monitoring statement_id = str(statement_info['id']) get_statement_url = f"{livy_session_url}/statements/{statement_id}" print(f"Statement ID: {statement_id}") # Monitor statement execution print("Monitoring statement execution...") get_statement_response = requests.get(get_statement_url, headers=headers) statement_status = get_statement_response.json() while statement_status["state"] != "available": print(f" Statement state: {statement_status['state']} - waiting 5 seconds...") time.sleep(5) get_statement_response = requests.get(get_statement_url, headers=headers) statement_status = get_statement_response.json() # Retrieve and display results print("Statement execution completed!") if 'output' in statement_status and 'data' in statement_status['output']: results = statement_status['output']['data']['text/plain'] print("Query Results:") print(results) else: print("No output data available") else: print(f"Failed to submit statement. Status code: {execute_statement_response.status_code}") print(f"Response: {execute_statement_response.text}") except Exception as e: print(f"Error executing statement: {e}")Uruchom komórkę notesu. Powinno zostać wyświetlonych kilka wierszy przyrostowych wydrukowanych podczas przesyłania zadania i zwracanych wyników.
Prześlij drugą instrukcję spark.sql przy użyciu sesji usługi Livy API Spark
Dodaj kolejną komórkę notesu i wstaw ten kod.
print("Executing additional Spark SQL statement...") # Wait for session to be idle again get_session_response = requests.get(livy_session_url, headers=headers) session_status = get_session_response.json() while session_status["state"] != "idle": print(f" Waiting for session to be idle... Current state: {session_status['state']}") time.sleep(5) get_session_response = requests.get(livy_session_url, headers=headers) session_status = get_session_response.json() # Execute another statement - Replace with your actual query payload_data = { "code": f"spark.sql(\"SELECT COUNT(*) as total_records FROM {table_name}\").show()", "kind": "spark" } print(f"Executing query: {payload_data['code']}") try: # Submit the second statement execute_statement_response = requests.post(execute_statement_url, headers=headers, json=payload_data) if execute_statement_response.status_code == 200: statement_info = execute_statement_response.json() print('Second statement submitted successfully') statement_id = str(statement_info['id']) get_statement_url = f"{livy_session_url}/statements/{statement_id}" # Monitor execution print("Monitoring statement execution...") get_statement_response = requests.get(get_statement_url, headers=headers) statement_status = get_statement_response.json() while statement_status["state"] != "available": print(f" Statement state: {statement_status['state']} - waiting 5 seconds...") time.sleep(5) get_statement_response = requests.get(get_statement_url, headers=headers) statement_status = get_statement_response.json() # Display results print("Second statement execution completed!") if 'output' in statement_status and 'data' in statement_status['output']: results = statement_status['output']['data']['text/plain'] print("Query Results:") print(results) else: print("No output data available") else: print(f"Failed to submit second statement. Status code: {execute_statement_response.status_code}") except Exception as e: print(f"Error executing second statement: {e}")Uruchom komórkę notesu. Powinno zostać wyświetlonych kilka wierszy przyrostowych wydrukowanych podczas przesyłania zadania i zwracanych wyników.
Zakończ sesję Livy
Dodaj kolejną komórkę notesu i wstaw ten kod.
print("Cleaning up Livy session...") try: # Check current session status before deletion get_session_response = requests.get(livy_session_url, headers=headers) if get_session_response.status_code == 200: session_info = get_session_response.json() print(f"Session state before deletion: {session_info.get('state', 'unknown')}") print(f"Deleting session at: {livy_session_url}") # Delete the session delete_response = requests.delete(livy_session_url, headers=headers) if delete_response.status_code == 200: print("Session deleted successfully") elif delete_response.status_code == 404: print("Session was already deleted or not found") else: print(f"Delete request completed with status code: {delete_response.status_code}") print(f"Response: {delete_response.text}") print(f"Delete response details: {delete_response}") except requests.exceptions.RequestException as e: print(f"Network error during session deletion: {e}") except Exception as e: print(f"Error during session cleanup: {e}")
Wyświetl swoje zadania w centrum monitorowania
Aby wyświetlić różne działania platformy Apache Spark, możesz uzyskać dostęp do centrum monitorowania, wybierając pozycję Monitoruj w linkach nawigacji po lewej stronie.
Gdy sesja jest w toku lub jest w stanie ukończonym, możesz wyświetlić stan sesji, przechodząc do pozycji Monitor.
Wybierz i otwórz najnowszą nazwę działania.
W tym przypadku sesji interfejsu API usługi Livy można wyświetlić poprzednie przesłania sesji, szczegóły uruchomienia, wersje platformy Spark i konfigurację. Zwróć uwagę na status zatrzymania w prawym górnym rogu.
Aby podsumować cały proces, potrzebny jest klient zdalny, taki jak Visual Studio Code, aplikacja/SPN Microsoft Entra, adres URL punktu końcowego interfejsu API Livy, uwierzytelnianie względem usługi Lakehouse, a na koniec interfejs API sesji Livy.