Udostępnij przez


Przesyłanie i wykonywanie zadań sesji przy użyciu interfejsu API usługi Livy

Dotyczy:✅ Inżynieria danych i nauka o danych w usłudze Microsoft Fabric

Dowiedz się, jak przesyłać zadania sesji Spark przy użyciu interfejsu API usługi Livy dla Fabric Data Engineering.

Wymagania wstępne

Interfejs API usługi Livy definiuje ujednolicony punkt końcowy dla operacji. Zastąp symbole zastępcze {Entra_TenantID}, {Entra_ClientID}, {Fabric_WorkspaceID}, {Fabric_LakehouseID} odpowiednimi wartościami, korzystając z przykładów w tym artykule.

Konfigurowanie programu Visual Studio Code dla sesji interfejsu API usługi Livy

  1. Wybierz Ustawienia Lakehouse w usłudze Fabric Lakehouse.

    Zrzut ekranu przedstawiający ustawienia usługi Lakehouse.

  2. Przejdź do sekcji Livy endpoint.

    Zrzut ekranu przedstawiający punkt końcowy usługi Lakehouse Livy i łańcuch połączenia dla zadania sesji.

  3. Skopiuj ciąg połączenia zadania sesji (pierwsze czerwone pole na obrazie) do swojego kodu.

  4. Przejdź do Centrum administracyjne Microsoft Entra i skopiuj identyfikator aplikacji (klienta) i identyfikator katalogu (dzierżawcy) do swojego kodu.

    Zrzut ekranu przedstawiający przegląd aplikacji interfejsu API Livy w centrum administracyjnym Microsoft Entra.

Uwierzytelnij sesję Spark interfejsu API Livy przy użyciu tokenu użytkownika Microsoft Entra lub tokenu SPN Microsoft Entra.

Uwierzytelnianie sesji interfejsu API Livy dla Sparka przy użyciu tokenu SPN z Microsoft Entra

  1. .ipynb Utwórz notes w programie Visual Studio Code i wstaw następujący kod.

    import sys
    from msal import ConfidentialClientApplication
    
    # Configuration - Replace with your actual values
    tenant_id = "Entra_TenantID"  # Microsoft Entra tenant ID
    client_id = "Entra_ClientID"  # Service Principal Application ID
    
    # Certificate paths - Update these paths to your certificate files
    certificate_path = "PATH_TO_YOUR_CERTIFICATE.pem"      # Public certificate file
    private_key_path = "PATH_TO_YOUR_PRIVATE_KEY.pem"      # Private key file
    certificate_thumbprint = "YOUR_CERTIFICATE_THUMBPRINT" # Certificate thumbprint
    
    # OAuth settings
    audience = "https://analysis.windows.net/powerbi/api/.default"
    authority = f"https://login.windows.net/{tenant_id}"
    
    def get_access_token(client_id, audience, authority, certificate_path, private_key_path, certificate_thumbprint=None):
        """
        Get an app-only access token for a Service Principal using OAuth 2.0 client credentials flow.
    
        This function uses certificate-based authentication which is more secure than client secrets.
    
        Args:
            client_id (str): The Service Principal's client ID  
            audience (str): The audience for the token (resource scope)
            authority (str): The OAuth authority URL
            certificate_path (str): Path to the certificate file (.pem format)
            private_key_path (str): Path to the private key file (.pem format)
            certificate_thumbprint (str): Certificate thumbprint (optional but recommended)
    
        Returns:
            str: The access token for API authentication
    
        Raises:
            Exception: If token acquisition fails
        """
        try:
            # Read the certificate from PEM file
            with open(certificate_path, "r", encoding="utf-8") as f:
                certificate_pem = f.read()
    
            # Read the private key from PEM file
            with open(private_key_path, "r", encoding="utf-8") as f:
                private_key_pem = f.read()
    
            # Create the confidential client application
            app = ConfidentialClientApplication(
                client_id=client_id,
                authority=authority,
                client_credential={
                    "private_key": private_key_pem,
                    "thumbprint": certificate_thumbprint,
                    "certificate": certificate_pem
                }
            )
    
            # Acquire token using client credentials flow
            token_response = app.acquire_token_for_client(scopes=[audience])
    
            if "access_token" in token_response:
                print("Successfully acquired access token")
                return token_response["access_token"]
            else:
                raise Exception(f"Failed to retrieve token: {token_response.get('error_description', 'Unknown error')}")
    
        except FileNotFoundError as e:
            print(f"Certificate file not found: {e}")
            sys.exit(1)
        except Exception as e:
            print(f"Error retrieving token: {e}", file=sys.stderr)
            sys.exit(1)
    
    # Get the access token
    token = get_access_token(client_id, audience, authority, certificate_path, private_key_path, certificate_thumbprint)
    
    
  2. Uruchom komórkę notesu. Powinien zostać zwrócony token Entra firmy Microsoft.

    Zrzut ekranu przedstawiający token spN firmy Microsoft zwrócony po uruchomieniu komórki.

Uwierzytelnianie sesji Spark interfejsu API Livy przy użyciu tokenu użytkownika Microsoft Entra

  1. .ipynb Utwórz notes w programie Visual Studio Code i wstaw następujący kod.

    from msal import PublicClientApplication
    import requests
    import time
    
    # Configuration - Replace with your actual values
    tenant_id = "Entra_TenantID"  # Microsoft Entra tenant ID
    client_id = "Entra_ClientID"  # Application ID (can be the same as above or different)
    
    # Required scopes for Microsoft Fabric API access
    scopes = [
        "https://api.fabric.microsoft.com/Lakehouse.Execute.All",      # Execute operations in lakehouses
        "https://api.fabric.microsoft.com/Lakehouse.Read.All",        # Read lakehouse metadata
        "https://api.fabric.microsoft.com/Item.ReadWrite.All",        # Read/write fabric items
        "https://api.fabric.microsoft.com/Workspace.ReadWrite.All",   # Access workspace operations
        "https://api.fabric.microsoft.com/Code.AccessStorage.All",    # Access storage from code
        "https://api.fabric.microsoft.com/Code.AccessAzureKeyvault.All",     # Access Azure Key Vault
        "https://api.fabric.microsoft.com/Code.AccessAzureDataExplorer.All", # Access Azure Data Explorer
        "https://api.fabric.microsoft.com/Code.AccessAzureDataLake.All",     # Access Azure Data Lake
        "https://api.fabric.microsoft.com/Code.AccessFabric.All"             # General Fabric access
    ]
    
    def get_access_token(tenant_id, client_id, scopes):
        """
        Get an access token using interactive authentication.
    
        This method will open a browser window for user authentication.
    
        Args:
            tenant_id (str): The Microsoft Entra tenant ID
            client_id (str): The application client ID
            scopes (list): List of required permission scopes
    
        Returns:
            str: The access token, or None if authentication fails
        """
        app = PublicClientApplication(
            client_id,
            authority=f"https://login.microsoftonline.com/{tenant_id}"
        )
    
        print("Opening browser for interactive authentication...")
        token_response = app.acquire_token_interactive(scopes=scopes)
    
        if "access_token" in token_response:
            print("Successfully authenticated")
            return token_response["access_token"]
        else:
            print(f"Authentication failed: {token_response.get('error_description', 'Unknown error')}")
            return None
    
    # Uncomment the lines below to use interactive authentication
    token = get_access_token(tenant_id, client_id, scopes)
    print("Access token acquired via interactive login")
    
  2. Uruchom komórkę notatnika. Powinien zostać zwrócony token Entra firmy Microsoft.

    Zrzut ekranu z tokenem użytkownika Microsoft Entra zwróconym po uruchomieniu komórki.

Tworzenie sesji platformy Spark interfejsu API usługi Livy

  1. Dodaj kolejną komórkę notesu i wstaw ten kod.

    import json
    import requests
    
    api_base_url = "https://api.fabric.microsoft.com/"  # Base URL for Fabric APIs
    
    # Fabric Resource IDs - Replace with your workspace and lakehouse IDs
    workspace_id = "Fabric_WorkspaceID"
    lakehouse_id = "Fabric_LakehouseID"
    
    # Construct the Livy API session URL
    # URL pattern: {base_url}/v1/workspaces/{workspace_id}/lakehouses/{lakehouse_id}/livyapi/versions/{api_version}/sessions
    livy_api_session_url = (f"{api_base_url}v1/workspaces/{workspace_id}/lakehouses/{lakehouse_id}/"
                           f"livyapi/versions/2023-12-01/sessions")
    
    # Set up authentication headers
    headers = {"Authorization": f"Bearer {token}"}
    
    print(f"Livy API URL: {livy_api_session_url}")
    print("Creating Livy session...")
    
    try:
        # Create a new Livy session with default configuration
        create_livy_session = requests.post(livy_api_session_url, headers=headers, json={})
    
        # Check if the request was successful
        if create_livy_session.status_code == 200:
            session_info = create_livy_session.json()
            print('Livy session creation request submitted successfully')
            print(f'Session Info: {json.dumps(session_info, indent=2)}')
    
            # Extract session ID for future operations
            livy_session_id = session_info['id']
            livy_session_url = f"{livy_api_session_url}/{livy_session_id}"
    
            print(f"Session ID: {livy_session_id}")
            print(f"Session URL: {livy_session_url}")
    
        else:
            print(f"Failed to create session. Status code: {create_livy_session.status_code}")
            print(f"Response: {create_livy_session.text}")
    
    except requests.exceptions.RequestException as e:
        print(f"Network error occurred: {e}")
    except json.JSONDecodeError as e:
        print(f"JSON decode error: {e}")
        print(f"Response text: {create_livy_session.text}")
    except Exception as e:
        print(f"Unexpected error: {e}")
    
  2. Uruchom komórkę notesu. Powinien zostać wyświetlony jeden wiersz wydrukowany podczas tworzenia sesji usługi Livy.

    Zrzut ekranu przedstawiający wyniki wykonania pierwszej komórki notesu.

  3. Możesz sprawdzić, czy sesja usługi Livy została utworzona, korzystając z opcji [Wyświetl swoje zadania w Centrum monitorowania](#View your jobs in the Monitoring hub).

Integracja ze środowiskami Fabric

Domyślnie ta sesja interfejsu API usługi Livy działa na domyślnej puli początkowej dla obszaru roboczego. Alternatywnie możesz użyć środowisk Fabric Tworzenie, konfigurowanie i używanie środowiska w usłudze Microsoft Fabric, aby dostosować pulę Spark, z której sesja interfejsu API Livy korzysta do tych zadań Spark. Aby użyć środowiska Fabric, zaktualizuj poprzednią komórkę notesu za pomocą tego obiektu JSON.

create_livy_session = requests.post(livy_base_url, headers = headers, json = {
    "conf" : {
        "spark.fabric.environmentDetails" : "{\"id\" : \""EnvironmentID""}"}
        }
)

Przesyłanie instrukcji spark.sql przy użyciu sesji usługi Livy API Spark

  1. Dodaj kolejną komórkę notesu i wstaw ten kod.

        # call get session API
    import time
    
    table_name = "green_tripdata_2022"
    
    print("Checking session status...")
    
    # Get current session status
    get_session_response = requests.get(livy_session_url, headers=headers)
    session_status = get_session_response.json()
    print(f"Current session state: {session_status['state']}")
    
    # Wait for session to become idle (ready to accept statements)
    print("Waiting for session to become idle...")
    while session_status["state"] != "idle":
        print(f"   Session state: {session_status['state']} - waiting 5 seconds...")
        time.sleep(5)
        get_session_response = requests.get(livy_session_url, headers=headers)
        session_status = get_session_response.json()
    
    print("Session is now idle and ready to accept statements")
    
    # Execute a Spark SQL statement
    execute_statement_url = f"{livy_session_url}/statements"
    
    # Define your Spark SQL query - Replace with your actual table and query
    payload_data = {
        "code": "spark.sql(\"SELECT * FROM {table_name} WHERE column_name = 'some_value' LIMIT 10\").show()",
        "kind": "spark"  # Type of code (spark, pyspark, sql, etc.)
    }
    
    print("Submitting Spark SQL statement...")
    print(f"Query: {payload_data['code']}")
    
    try:
        # Submit the statement for execution
        execute_statement_response = requests.post(execute_statement_url, headers=headers, json=payload_data)
    
        if execute_statement_response.status_code == 200:
            statement_info = execute_statement_response.json()
            print('Statement submitted successfully')
            print(f"Statement Info: {json.dumps(statement_info, indent=2)}")
    
            # Get statement ID for monitoring
            statement_id = str(statement_info['id'])
            get_statement_url = f"{livy_session_url}/statements/{statement_id}"
    
            print(f"Statement ID: {statement_id}")
    
            # Monitor statement execution
            print("Monitoring statement execution...")
            get_statement_response = requests.get(get_statement_url, headers=headers)
            statement_status = get_statement_response.json()
    
            while statement_status["state"] != "available":
                print(f"   Statement state: {statement_status['state']} - waiting 5 seconds...")
                time.sleep(5)
                get_statement_response = requests.get(get_statement_url, headers=headers)
                statement_status = get_statement_response.json()
    
            # Retrieve and display results
            print("Statement execution completed!")
            if 'output' in statement_status and 'data' in statement_status['output']:
                results = statement_status['output']['data']['text/plain']
                print("Query Results:")
                print(results)
            else:
                print("No output data available")
    
        else:
            print(f"Failed to submit statement. Status code: {execute_statement_response.status_code}")
            print(f"Response: {execute_statement_response.text}")
    
    except Exception as e:
        print(f"Error executing statement: {e}")
    
  2. Uruchom komórkę notesu. Powinno zostać wyświetlonych kilka wierszy przyrostowych wydrukowanych podczas przesyłania zadania i zwracanych wyników.

    Zrzut ekranu przedstawiający wyniki pierwszej komórki notatnika po wykonaniu zapytania Spark.sql.

Prześlij drugą instrukcję spark.sql przy użyciu sesji usługi Livy API Spark

  1. Dodaj kolejną komórkę notesu i wstaw ten kod.

    print("Executing additional Spark SQL statement...")
    
    # Wait for session to be idle again
    get_session_response = requests.get(livy_session_url, headers=headers)
    session_status = get_session_response.json()
    
    while session_status["state"] != "idle":
        print(f"   Waiting for session to be idle... Current state: {session_status['state']}")
        time.sleep(5)
        get_session_response = requests.get(livy_session_url, headers=headers)
        session_status = get_session_response.json()
    
    # Execute another statement - Replace with your actual query
    payload_data = {
        "code": f"spark.sql(\"SELECT COUNT(*) as total_records FROM {table_name}\").show()",
        "kind": "spark"
    }
    
    print(f"Executing query: {payload_data['code']}")
    
    try:
        # Submit the second statement
        execute_statement_response = requests.post(execute_statement_url, headers=headers, json=payload_data)
    
        if execute_statement_response.status_code == 200:
            statement_info = execute_statement_response.json()
            print('Second statement submitted successfully')
    
            statement_id = str(statement_info['id'])
            get_statement_url = f"{livy_session_url}/statements/{statement_id}"
    
            # Monitor execution
            print("Monitoring statement execution...")
            get_statement_response = requests.get(get_statement_url, headers=headers)
            statement_status = get_statement_response.json()
    
            while statement_status["state"] != "available":
                print(f"   Statement state: {statement_status['state']} - waiting 5 seconds...")
                time.sleep(5)
                get_statement_response = requests.get(get_statement_url, headers=headers)
                statement_status = get_statement_response.json()
    
            # Display results
            print("Second statement execution completed!")
            if 'output' in statement_status and 'data' in statement_status['output']:
                results = statement_status['output']['data']['text/plain']
                print("Query Results:")
                print(results)
            else:
                print("No output data available")
    
        else:
            print(f"Failed to submit second statement. Status code: {execute_statement_response.status_code}")
    
    except Exception as e:
        print(f"Error executing second statement: {e}")
    
  2. Uruchom komórkę notesu. Powinno zostać wyświetlonych kilka wierszy przyrostowych wydrukowanych podczas przesyłania zadania i zwracanych wyników.

    Zrzut ekranu przedstawiający wyniki wykonania drugiej komórki notesu.

Zakończ sesję Livy

  1. Dodaj kolejną komórkę notesu i wstaw ten kod.

    print("Cleaning up Livy session...")
    
    try:
        # Check current session status before deletion
        get_session_response = requests.get(livy_session_url, headers=headers)
        if get_session_response.status_code == 200:
            session_info = get_session_response.json()
            print(f"Session state before deletion: {session_info.get('state', 'unknown')}")
    
        print(f"Deleting session at: {livy_session_url}")
    
        # Delete the session
        delete_response = requests.delete(livy_session_url, headers=headers)
    
        if delete_response.status_code == 200:
            print("Session deleted successfully")
        elif delete_response.status_code == 404:
            print("Session was already deleted or not found")
        else:
            print(f"Delete request completed with status code: {delete_response.status_code}")
            print(f"Response: {delete_response.text}")
    
        print(f"Delete response details: {delete_response}")
    
    except requests.exceptions.RequestException as e:
        print(f"Network error during session deletion: {e}")
    except Exception as e:
        print(f"Error during session cleanup: {e}")
    

Wyświetl swoje zadania w centrum monitorowania

Aby wyświetlić różne działania platformy Apache Spark, możesz uzyskać dostęp do centrum monitorowania, wybierając pozycję Monitoruj w linkach nawigacji po lewej stronie.

  1. Gdy sesja jest w toku lub jest w stanie ukończonym, możesz wyświetlić stan sesji, przechodząc do pozycji Monitor.

    Zrzut ekranu przedstawiający poprzednie przesyłania API Livy w centrum monitoringu.

  2. Wybierz i otwórz najnowszą nazwę działania.

    Zrzut ekranu przedstawiający najnowsze działanie interfejsu API usługi Livy w centrum monitorowania.

  3. W tym przypadku sesji interfejsu API usługi Livy można wyświetlić poprzednie przesłania sesji, szczegóły uruchomienia, wersje platformy Spark i konfigurację. Zwróć uwagę na status zatrzymania w prawym górnym rogu.

    Zrzut ekranu przedstawiający najnowsze szczegóły działania interfejsu API usługi Livy w centrum monitorowania.

Aby podsumować cały proces, potrzebny jest klient zdalny, taki jak Visual Studio Code, aplikacja/SPN Microsoft Entra, adres URL punktu końcowego interfejsu API Livy, uwierzytelnianie względem usługi Lakehouse, a na koniec interfejs API sesji Livy.