Nuta
Dostęp do tej strony wymaga autoryzacji. Możesz spróbować się zalogować lub zmienić katalog.
Dostęp do tej strony wymaga autoryzacji. Możesz spróbować zmienić katalogi.
Mimo że system zezwala więcej niż jednej aplikacji na otwieranie pliku i zapisywanie w nim, aplikacje nie mogą zapisywać nawzajem pracy. Aplikacja może zapobiec temu problemowi, tymczasowo blokując zakres bajtów w pliku.
Funkcje LockFile i LockFileEx blokują określony zakres bajtów w pliku. Zakres może wykraczać poza bieżący koniec pliku. Blokowanie części pliku daje wątkom procesów blokowania wyłączny dostęp do określonego zakresu bajtów przy użyciu określonego uchwytu pliku. Próby uzyskania dostępu do zakresu bajtów zablokowanego przez inny proces zawsze kończą się niepowodzeniem. Jeśli proces blokowania próbuje uzyskać dostęp do zablokowanego zakresu bajtów za pośrednictwem drugiego dojścia pliku, próba zakończy się niepowodzeniem.
Notatka
Blokady zakresu bajtów są ignorowane podczas korzystania z plików mapowanych na pamięć.
Funkcja LockFileEx umożliwia aplikacji określenie jednego z dwóch typów blokad. Wyłączna blokada odmawia wszystkim innym procesom zarówno dostępu do odczytu, jak i zapisu do określonego zakresu bajtów pliku. Współdzielona blokada odmawia wszystkim procesom dostępu do zapisu w określonym zakresie bajtów pliku, w tym procesowi, który jako pierwszy blokuje ten zakres bajtów. Może to służyć do tworzenia zakresu bajtów tylko do odczytu w pliku.
Aplikacja odblokuje zakres bajtów przy użyciu UnlockFile lub UnlockFileEx funkcji i powinna odblokować wszystkie zablokowane obszary przed zamknięciem pliku.
Aby zapoznać się z przykładem użycia LockFile, zobacz Dołączanie jednego pliku do innego pliku.
W poniższych przykładach pokazano, jak używać LockFileEx. Pierwszy przykład to prosty przykład tworzenia pliku, zapisywania danych w nim, a następnie blokowania sekcji w środku.
Uwaga Ten przykład nie zmienia danych po zablokowaniu pliku.
// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
// PARTICULAR PURPOSE.
//
// Copyright (C) Microsoft. All rights reserved
#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#define NUMWRITES 10
#define TESTSTRLEN 11
const char TestData[NUMWRITES][TESTSTRLEN] =
{
"TestData0\n",
"TestData1\n",
"TestData2\n",
"TestData3\n",
"TestData4\n",
"TestData5\n",
"TestData6\n",
"TestData7\n",
"TestData8\n",
"TestData9\n"
};
int main(int argc, char *argv[])
{
BOOL fSuccess = FALSE;
// Create the file, open for both read and write.
HANDLE hFile = CreateFile(TEXT("datafile.txt"),
GENERIC_READ | GENERIC_WRITE,
0, // open with exclusive access
NULL, // no security attributes
CREATE_NEW, // creating a new temp file
0, // not overlapped index/O
NULL);
if (hFile == INVALID_HANDLE_VALUE)
{
// Handle the error.
printf("CreateFile failed (%d)\n", GetLastError());
return (1);
}
// Write some data to the file.
DWORD dwNumBytesWritten = 0;
for (int i=0; i<NUMWRITES; i++)
{
fSuccess = WriteFile(hFile,
TestData[i],
TESTSTRLEN,
&dwNumBytesWritten,
NULL); // sync operation.
if (!fSuccess)
{
// Handle the error.
printf("WriteFile failed (%d)\n", GetLastError());
return (2);
}
}
FlushFileBuffers(hFile);
// Lock the 4th write-section.
// First, set up the Overlapped structure with the file offset
// required by LockFileEx, three lines in to the file.
OVERLAPPED sOverlapped;
sOverlapped.Offset = TESTSTRLEN * 3;
sOverlapped.OffsetHigh = 0;
// Actually lock the file. Specify exclusive access, and fail
// immediately if the lock cannot be obtained.
fSuccess = LockFileEx(hFile, // exclusive access,
LOCKFILE_EXCLUSIVE_LOCK |
LOCKFILE_FAIL_IMMEDIATELY,
0, // reserved, must be zero
TESTSTRLEN, // number of bytes to lock
0,
&sOverlapped); // contains the file offset
if (!fSuccess)
{
// Handle the error.
printf ("LockFileEx failed (%d)\n", GetLastError());
return (3);
}
else printf("LockFileEx succeeded\n");
/////////////////////////////////////////////////////////////////
// Add code that does something interesting to locked section, /
// which should be line 4 /
/////////////////////////////////////////////////////////////////
// Unlock the file.
fSuccess = UnlockFileEx(hFile,
0, // reserved, must be zero
TESTSTRLEN, // num. of bytes to unlock
0,
&sOverlapped); // contains the file offset
if (!fSuccess)
{
// Handle the error.
printf ("UnlockFileEx failed (%d)\n", GetLastError());
return (4);
}
else printf("UnlockFileEx succeeded\n");
// Clean up handles, memory, and the created file.
fSuccess = CloseHandle(hFile);
if (!fSuccess)
{
// Handle the error.
printf ("CloseHandle failed (%d)\n", GetLastError());
return (5);
}
fSuccess = DeleteFile(TEXT("datafile.txt"));
if (!fSuccess)
{
// Handle the error.
printf ("DeleteFile failed (%d)\n", GetLastError());
return (6);
}
return (0);
}
Poniższy przykład to zaawansowany pokaz blokowania zakresu bajtów przy użyciu wielu wątków i prostej bazy danych wykonującej losowe operacje na jednym pliku danych. Aby uzyskać więcej informacji, zobacz komentarze osadzonego kodu i sekcję po przykładowym kodzie.
// THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
// ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
// PARTICULAR PURPOSE.
//
// Copyright (C) Microsoft. All rights reserved
#define UNICODE
#define _CRT_RAND_S
#include <stdlib.h>
#include <windows.h>
#include <stdio.h>
#include <malloc.h>
#include <conio.h>
#include <process.h>
#include <winioctl.h>
#define RECORD_SIZE 0x300
#define NUM_RECORDS 0x1000
#define NUM_THREADS 8
#define NUM_FILEOPS 500
#define BITMAP_SIZE ((NUM_RECORDS) / 8)
#define DATA_SIZE ((RECORD_SIZE) - sizeof(RECORD_HEADER))
#define MSG_PRINTF(S,...) wprintf(L"[THREAD_ID %d] " S, \
GetCurrentThreadId(), \
__VA_ARGS__)
#if defined BRLS_DEBUG
#define DBG_PRINTF(S,...) wprintf(L"[THREAD_ID %d] " S, \
GetCurrentThreadId(), \
__VA_ARGS__)
#else
#define DBG_PRINTF(...)
#define PrintBitmap(...)
#endif
#define MASTER_RECORD_TYPE_CODE 'rtsM'
#define DATA_RECORD_TYPE_CODE 'ataD'
//
// Record type definitions.
//
typedef struct _RECORD_HEADER {
ULONG TypeCode; // Either MASTER_RECORD_TYPE_CODE or DATA_RECORD_TYPE_CODE.
ULONG SeqNumber; // Starts at 1 and is incremented every time contents are modified.
} RECORD_HEADER;
typedef struct _MASTER_RECORD {
RECORD_HEADER Header;
BYTE Bitmap[BITMAP_SIZE]; // A bitmap indicating which records are allocated.
} MASTER_RECORD;
typedef struct _DATA_RECORD {
RECORD_HEADER Header;
BYTE Data[DATA_SIZE]; // Record raw data.
} DATA_RECORD;
//
// Types of I/O for IoRecord.
//
typedef enum {
IoRead,
IoWrite,
IoLock,
IoUnlock
} IO_TYPE;
//
// Types of operations for OperateOnRecord.
//
typedef enum {
CreateRecord = 0,
DeleteRecord,
ModifyRecord,
MaxOprRecord
} OPERATION;
//
// Parameter block for I/Os passed to IoRecord.
//
typedef struct _IO_PARAM {
IO_TYPE Type;
union _IO_PARAM_PARAMS {
struct {
PVOID Data;
ULONG RecSize;
} IoInfo;
struct {
BOOL Exclusive;
} LockInfo ;
} Params;
} IO_PARAM, *PIO_PARAM;
void ErrorExitThread()
//
// This function is called immediately after an unrecoverable error is logged.
//
{
MSG_PRINTF(L"An error has been logged, calling ExitThread.\n");
ExitThread(1);
}
BOOL IoRecord(HANDLE hFile, ULONG RecNumber, PIO_PARAM pIoParam)
//
// This function performs I/O (read, write, lock or unlock) in a record, according
// to the parameters passed in the IO_PARAM block.
//
// Arguments:
// hFile - Handle to the file containing the records.
// RecNumber - Number of the record to be operated on.
// pIoParam - Pointer to IO_PARAM structure.
//
// Return value:
// TRUE if the I/O succeeded, FALSE if not.
//
{
OVERLAPPED Overlapped;
BOOL Result;
ULARGE_INTEGER RecOffset;
DWORD NumBytes;
// Initialize Overlapped.
SecureZeroMemory(&Overlapped, sizeof(OVERLAPPED));
Overlapped.hEvent = CreateEvent(NULL,
FALSE,
FALSE,
NULL);
if (NULL == Overlapped.hEvent)
{
MSG_PRINTF(L"CreateEvent for Overlapped.hEvent failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
// Calculate record position.
RecOffset.QuadPart = RecNumber * RECORD_SIZE;
Overlapped.Offset = RecOffset.LowPart;
Overlapped.OffsetHigh = RecOffset.HighPart;
// Issue the operation.
switch (pIoParam->Type)
{
case IoLock:
Result = LockFileEx(hFile,
pIoParam->Params.LockInfo.Exclusive ? LOCKFILE_EXCLUSIVE_LOCK : 0,
0,
RECORD_SIZE,
0,
&Overlapped);
break;
case IoUnlock:
Result = UnlockFileEx(hFile,
0,
RECORD_SIZE,
0,
&Overlapped);
break;
case IoRead:
Result = ReadFile(hFile,
pIoParam->Params.IoInfo.Data,
pIoParam->Params.IoInfo.RecSize,
NULL,
&Overlapped);
break;
case IoWrite:
Result = WriteFile(hFile,
pIoParam->Params.IoInfo.Data,
pIoParam->Params.IoInfo.RecSize,
NULL,
&Overlapped);
break;
default:
Result = FALSE;
break;
}
if (!Result)
{
if (GetLastError() == ERROR_IO_PENDING)
{
// Wait until the operation finishes.
if (GetOverlappedResult(hFile,
&Overlapped,
&NumBytes,
TRUE) == FALSE)
{
MSG_PRINTF(L"GetOverlappedResult for Overlapped.hEvent failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
Result = TRUE;
} else {
MSG_PRINTF(L"IoRecord failed with error 0x%08x. Failure passed to caller.\n",
GetLastError());
}
}
CloseHandle(Overlapped.hEvent);
return Result;
}
//
// The following functions are wrappers around IoRecord, they just set the correct
// parameters in the IO_PARAM block to correspond to the requested operation and
// pass that to IoRecord.
//
BOOL ReadRecord(HANDLE hFile, ULONG RecNumber, PVOID Record, ULONG RecSize)
{
IO_PARAM IoParam;
IoParam.Type = IoRead;
IoParam.Params.IoInfo.Data = Record;
IoParam.Params.IoInfo.RecSize = RecSize;
return IoRecord(hFile, RecNumber, &IoParam);
}
BOOL WriteRecord(HANDLE hFile, ULONG RecNumber, PVOID Record, ULONG RecSize)
{
IO_PARAM IoParam;
IoParam.Type = IoWrite;
IoParam.Params.IoInfo.Data = Record;
IoParam.Params.IoInfo.RecSize = RecSize;
return IoRecord(hFile, RecNumber, &IoParam);
}
BOOL LockRecord(HANDLE hFile, ULONG RecNumber, BOOL Exclusive)
{
IO_PARAM IoParam;
IoParam.Type = IoLock;
IoParam.Params.LockInfo.Exclusive = Exclusive;
return IoRecord(hFile, RecNumber, &IoParam);
}
BOOL UnlockRecord(HANDLE hFile, ULONG RecNumber)
{
IO_PARAM IoParam;
IoParam.Type = IoUnlock;
return IoRecord(hFile, RecNumber, &IoParam);
}
ULONG ReserveFirstFreeRecord(BYTE* Bitmap)
//
// This function iterates through the bitmap and reserves the first free record
// it can find in the bitmap.
//
// Arguments:
// Bitmap - Pointer to the bitmap.
//
// Return value:
// Either zero, if there are no free records, or the position of the record
// that was just reserved.
//
{
int i;
BYTE Bit = 1;
for (i = 0; i < NUM_RECORDS; i++)
{
if (Bitmap[i / 8] & Bit)
{
Bit <<= 1;
if (Bit == 0) { Bit = 1; }
} else {
Bitmap[i / 8] |= Bit;
return i;
}
}
return 0;
}
BOOL TestBit(BYTE* Bitmap, ULONG Bit)
//
// This function tests if a given bit is set in the bitmap.
//
// Arguments:
// Bitmap - Pointer to the bitmap.
// Bit - Position of the bit in the bitmap.
//
// Return value:
// TRUE if the bit is set, FALSE otherwise.
//
{
ULONG Byte = Bit / 8;
Bit = Bit % 8;
return (BOOL)(Bitmap[Byte] & (1 << Bit));
}
void ClearBit(BYTE* Bitmap, ULONG Bit)
//
// This function clears a given bit in the bitmap.
//
// Arguments:
// Bitmap - Pointer to the bitmap.
// Bit - Position of the bit in the bitmap.
//
{
ULONG Byte = Bit / 8;
Bit = Bit % 8;
Bitmap[Byte] &= ~(1 << Bit);
}
#ifdef BRLS_DEBUG
void PrintBitmap(BYTE* Bitmap)
//
// This function prints the whole bitmap, for debugging purposes.
//
// Arguments:
// Bitmap - Pointer to the bitmap.
//
{
int i;
for (i = 0; i < BITMAP_SIZE; i++)
{
wprintf(L"%1x", Bitmap[i]);
}
wprintf(L"\n");
}
#endif
void InitRecord(RECORD_HEADER* Record, BOOL Master, ULONG SeqNumber)
//
// This function initializes a in-memory record structure with the correct
// type code and sequence number. In case of the Master Record, the bitmap
// is initialized too.
//
// Arguments:
// Record - Pointer to the record structure.
// Master - TRUE if this is a Master Record, FALSE otherwise.
// SeqNumber - Initial sequence number.
//
{
ULONG RecSize = Master ? sizeof(MASTER_RECORD) : sizeof(DATA_RECORD);
ULONG TypeCode = Master ? MASTER_RECORD_TYPE_CODE : DATA_RECORD_TYPE_CODE;
SecureZeroMemory(Record, RecSize);
Record->TypeCode = TypeCode;
Record->SeqNumber = Master ? 0 : SeqNumber;
if (Master)
{
((MASTER_RECORD*)Record)->Bitmap[0] = 1;
}
}
DATA_RECORD* PrepareRecord(ULONG SeqNumber)
//
// This function allocates a new in-memory record structure and initializes it
// as a brand new data record.
//
// Arguments:
// SeqNumber - Sequence number with which to initialize the record.
//
// Return value:
// Pointer to the record structure.
//
{
DATA_RECORD* Record = NULL;
Record = (DATA_RECORD*) malloc(sizeof(DATA_RECORD));
if (Record == NULL)
{
MSG_PRINTF(L"Critical error: malloc for CreateRecord failed.\n");
ErrorExitThread();
}
InitRecord((RECORD_HEADER*)Record, FALSE, SeqNumber);
return Record;
}
void WriteData(DATA_RECORD* Record)
//
// This function fills a in-memory data record structure with random data.
// Errors do not interrupt execution.
//
// Arguments:
// Record - Pointer to the record structure.
//
{
PUINT iData;
int i;
errno_t err;
iData = (PUINT)Record->Data;
for (i = 0; i < DATA_SIZE; i += sizeof(ULONG), iData++)
{
err = rand_s(iData);
if (err != 0)
{
MSG_PRINTF(L"rand_s for WriteData failed with error 0x%08x, continuing execution.\n",
err);
}
}
}
BOOL OperateOnRecord(HANDLE hFile, PULONG RecNumber, OPERATION Operation)
//
// This function executes a high-level operation in a record (create, modify or delete).
//
// Arguments:
// hFile - Handle to the file containing the record to be operated on.
// RecNumber - Pointer to a ULONG that either will receive the number of the
// record created by this operation or just contains the number
// of the record that will be modified or deleted.
// Operation - Operation to be performed (CreateRecord, ModifyRecord or
// DeleteRecord).
//
// Return value:
// TRUE if the operation succeeded, FALSE otherwise.
//
{
BOOL Result;
BOOL Exists;
BOOL ExclusiveLock;
MASTER_RECORD MasterRecord;
DATA_RECORD* Record;
// Fail operations on Master Record.
if ((Operation != CreateRecord) && (*RecNumber == 0))
{
MSG_PRINTF(L"Cannot operate on Master Record.\n");
return FALSE;
}
// Lock Master Record. If we're just modifying a record, we can get a
// shared lock.
ExclusiveLock = (Operation != ModifyRecord);
Result = LockRecord(hFile, 0, ExclusiveLock);
if (!Result)
{
MSG_PRINTF(L"LockRecord (MasterRecord) for OperateOnRecord failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
// Read in Master Record.
Result = ReadRecord(hFile, 0, (PVOID)&MasterRecord, sizeof(MASTER_RECORD));
if (!Result)
{
MSG_PRINTF(L"ReadRecord (MasterRecord) for OperateOnRecord failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
if (MasterRecord.Header.TypeCode != MASTER_RECORD_TYPE_CODE)
{
MSG_PRINTF(L"Master Record corruption error: wrong typecode!\n");
ErrorExitThread();
}
DBG_PRINTF(L"MasterRecord bitmap (before): ");
PrintBitmap(MasterRecord.Bitmap);
if (Operation != CreateRecord)
{
// Test the bit in the bitmap corresponding to this record.
Exists = TestBit(MasterRecord.Bitmap, *RecNumber);
// Clear the bit if we are deleting the record.
if ((Operation == DeleteRecord) && Exists)
{
ClearBit(MasterRecord.Bitmap, *RecNumber);
}
} else {
// Reserve the first free record.
*RecNumber = ReserveFirstFreeRecord(MasterRecord.Bitmap);
if (*RecNumber != 0)
{
Exists = TRUE;
} else {
Exists = FALSE;
MSG_PRINTF(L"File is full!\n");
}
}
DBG_PRINTF(L"MasterRecord bitmap (after): ");
PrintBitmap(MasterRecord.Bitmap);
if ((Operation != ModifyRecord) && Exists)
{
// Update the Master Record's sequence number.
MasterRecord.Header.SeqNumber++;
// Write Master Record down.
Result = WriteRecord(hFile, 0, (PVOID)&MasterRecord, sizeof(MASTER_RECORD));
if (!Result)
{
MSG_PRINTF(L"WriteRecord (MasterRecord) for CreateRecord failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
}
// Unlock Master Record.
Result = UnlockRecord(hFile, 0);
if (!Result)
{
MSG_PRINTF(L"UnlockRecord (MasterRecord) for OperateOnRecord failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
if (!Exists)
{
if (*RecNumber != 0)
{
MSG_PRINTF(L"Record %d not present!\n", *RecNumber);
}
return FALSE;
}
// For record deletion, processing is done and skip to write.
// Otherwise, there is more to do.
if (Operation != DeleteRecord)
{
// Prepare a new record in memory.
Record = PrepareRecord(1);
// Lock the record exclusively.
Result = LockRecord(hFile, *RecNumber, TRUE);
if (!Result)
{
MSG_PRINTF(L"LockRecord for ModifyRecord failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
if (Operation == ModifyRecord)
{
// Read the record in from the file if we're modifying it.
Result = ReadRecord(hFile, *RecNumber, Record, RECORD_SIZE);
if (!Result)
{
MSG_PRINTF(L"ReadRecord for ModifyRecord failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
// Update record sequence number.
Record->Header.SeqNumber++;
}
// Write to the in-memory record.
WriteData(Record);
// Write the record to the file.
Result = WriteRecord(hFile, *RecNumber, Record, RECORD_SIZE);
if (!Result)
{
MSG_PRINTF(L"WriteRecord for ModifyRecord failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
// Unlock the record.
Result = UnlockRecord(hFile, *RecNumber);
if (!Result)
{
MSG_PRINTF(L"UnlockRecord for ModifyRecord failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
// Free the record structure.
free(Record);
}
return TRUE;
}
ULONG RandomOption(ULONG NumOpts)
//
// This function returns a random number between 0 and (NumOpts - 1).
// It basically is a random option select.
//
// Arguments:
// NumOpts - Number of options to choose from.
//
// Return value:
// A random option (random ULONG x | 0 <= x < NumOpts).
//
{
UINT Random;
errno_t err;
err = rand_s(&Random);
if (err != 0)
{
MSG_PRINTF(L"rand_s for RandomOption failed with error 0x%08x\n",
err);
}
return Random % NumOpts;
}
DWORD WINAPI WorkerThread(PVOID data)
//
// This is the tight loop executed by each of the threads operating in the file.
// Each thread has its own handle to the same file. After obtaining that handle,
// they go into a tight loop in which a record number and a record operation are
// chosen at random and that operation is then performed in that record.
//
// Arguments:
// Data - PVOID to a string containing the file name (so it can be opened).
//
// Return value:
// It should not return.
//
{
HANDLE hFile;
LPCWSTR FileName = (LPCWSTR)data;
ULONG RecNumber;
OPERATION Operation;
BOOL Result;
UINT i;
hFile = CreateFile(FileName,
GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL,
OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL | FILE_FLAG_OVERLAPPED,
NULL);
if (hFile == INVALID_HANDLE_VALUE)
{
MSG_PRINTF(L"CreateFile failed with error 0x%08x.\n",
GetLastError());
ErrorExitThread();
}
// Main loop for doing the random operations.
for (i = 0; i < NUM_FILEOPS; i++)
{
RecNumber = RandomOption(NUM_RECORDS);
Operation = (OPERATION)RandomOption(MaxOprRecord);
// Output message as to what action is being attempted.
switch (Operation)
{
case CreateRecord:
MSG_PRINTF(L"attempting record creation.\n");
break;
case ModifyRecord:
MSG_PRINTF(L"attempting modification of record %d.\n", RecNumber);
break;
case DeleteRecord:
MSG_PRINTF(L"attempting deletion of record %d.\n", RecNumber);
break;
}
// Perform the actual operation and handle the result,
// then loop again until done.
Result = OperateOnRecord(hFile, &RecNumber, Operation);
if (Result)
{
switch (Operation)
{
case CreateRecord:
MSG_PRINTF(L"created record %d.\n", RecNumber);
break;
case ModifyRecord:
MSG_PRINTF(L"modified record %d.\n", RecNumber);
break;
case DeleteRecord:
MSG_PRINTF(L"deleted record %d.\n", RecNumber);
break;
}
}
}
CloseHandle(hFile);
MSG_PRINTF(L"%d file operations complete. Exiting thread.\n", i);
return 0;
}
BOOL InitNewFile(LPCWSTR FileName)
//
// This function initializes a file with records. If the file already exists, it
// just returns, assuming it has a valid Master Record on it. If it does not
// exist, a brand new file is created and initialized with a clean Master Record.
//
// Arguments:
// FileName - Name of the file to be initialized.
//
// Return value:
// TRUE if the initialization succeeded, FALSE otherwise.
//
{
HANDLE hFile;
MASTER_RECORD MasterRecord;
DWORD BytesWritten;
DWORD Result;
//
// Create the file or open existing.
//
hFile = CreateFile(FileName,
GENERIC_READ | GENERIC_WRITE,
FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL,
OPEN_ALWAYS,
FILE_ATTRIBUTE_NORMAL,
NULL);
if (INVALID_HANDLE_VALUE == hFile)
{
MSG_PRINTF(L"CreateFile failed with error 0x%08x.\n",
GetLastError());
return FALSE;
}
else if (ERROR_ALREADY_EXISTS == GetLastError())
{
// This is ok, simply assume it's a valid file.
// Note that this does not actually test that the file
// is valid for this application. That error is caught later.
CloseHandle(hFile);
return TRUE;
} // The implied "else" is that the handle is a good one.
InitRecord((RECORD_HEADER*)&MasterRecord, TRUE, 0);
Result = WriteFile(hFile,
&MasterRecord,
sizeof(MASTER_RECORD),
&BytesWritten,
NULL);
if (!Result)
{
MSG_PRINTF(L"WriteFile failed with error 0x%08x.\n",
GetLastError());
}
CloseHandle(hFile);
return Result;
}
int __cdecl wmain(int argc, LPCWSTR argv[])
//
// Main function. Reads file name from command line argument, initializes the file
// and starts the worker threads, waiting for them to return.
//
{
HANDLE gThread[NUM_THREADS];
DWORD IdThread;
DWORD ResultCode;
LPCWSTR FileName = NULL;
if (argc != 2) {
wprintf(L"Invalid number of arguments!\n");
wprintf(L"Usage: %ws file_name\n", argv[0]);
return -1;
}
FileName = argv[1];
if (!InitNewFile(FileName))
{
wprintf(L"Unable to initialize the data file %ws.\n", FileName);
}
wprintf(L"Main thread creating %d worker threads for processing.\n",
NUM_THREADS);
for (int i = 0; i < NUM_THREADS; i++)
{
gThread[i] = CreateThread(NULL,
0,
(LPTHREAD_START_ROUTINE)WorkerThread,
(PVOID)FileName,
0,
&IdThread);
}
wprintf(L"Main thread waiting for worker threads to exit...\n");
ResultCode = WaitForMultipleObjects(
NUM_THREADS,
gThread,
TRUE,
INFINITE);
wprintf(L"WaitForMultipleObjects returned 0x%08x, execution complete.\n",
ResultCode);
// Do some clean-up.
for (int i = 0; i < NUM_THREADS; i++)
{
CloseHandle(gThread[i]);
}
return 0;
}
Ten przykład jest aplikacją konsolową systemu Windows, która wykonuje wiele współbieżnych dostępów do pliku, skoordynowanych przez blokady zakresów bajtów przy użyciu prostej bazy danych, składającej się z kilku rekordów o stałym rozmiarze. Należy pamiętać, że prawdziwa współbieżność zależy od liczby rdzeni procesora w systemie hosta.
Wszystkie rekordy mają dwa pierwsze pola wspólne: kod typu i numer sekwencji. Kod typu jest jednym z dwóch kodów: kod "Mstr" odnosi się do typu MASTER_RECORD, a kod "Dane" odnosi się do typu DATA_RECORD. Może istnieć tylko jeden MASTER_RECORD i zero lub więcej DATA_RECORDs. W tym przykładzie dane zawarte w rekordach danych są generowane losowo. Drugie pole , numer sekwencji, jest zwiększane za każdym razem, gdy rekord jest modyfikowany.
Po rozpoczęciu wykonywania, jeśli plik danych jeszcze nie istnieje, jest tworzony i inicjowany przez funkcję InitNewFile. Funkcja InitNewFile zapisuje rekord typu Master z pustą mapą bitową na początku. Jeśli plik już istnieje, zostanie otwarty; przyjmuje się, że na początku ma prawidłowy rekord główny.
Po pomyślnym utworzeniu lub pomyślnym otwarciu pliku uruchomiono wiele wątków roboczych, a wszystkie z nich uruchamiają pętlę, w której jest wybierana operacja i rekord losowo, a następnie próba wykonania tej operacji w tym rekordzie. Ponieważ te operacje są losowe, nie wszystkie z nich kończą się powodzeniem, ale niekoniecznie są błędami. Odpowiednie informacje o stanie są rejestrowane w konsoli.
Możliwe operacje są następujące: utworzenie nowego rekordu, modyfikacja istniejącego rekordu lub usunięcie istniejącego rekordu. Operacja tworzenia analizuje mapę bitową, aby znaleźć pierwszy wolny rekord i przydzieli ten rekord jako nowy rekord. Operacja modyfikacji odczytuje mapę bitową, aby sprawdzić, czy ten rekord rzeczywiście istnieje, a jeśli tak, modyfikuje ten rekord. Operacja usuwania czyści bit na bitmapie odpowiadający rekordowi, zwalniając przestrzeń zajmowaną na potrzeby przyszłej alokacji. Ponadto te operacje są podzielone w dwóch częściach: dostęp do obiektu MasterRecord, w którym są przechowywane metadane, oraz dostęp do samego rekordu danych.
Ponieważ zapisują one dane w rekordach danych, operacje tworzenia rekordu i modyfikowania rekordów są jedynymi, które wymagają dostępu do rekordów danych. Z tego powodu region objęty zapisem jest zablokowany wyłącznie tuż przed wykonaniem operacji. Operacje tworzenia i usuwania modyfikują mapę bitową, więc rekord główny musi być zablokowany na wyłączność. Jednak operacje modyfikacji rekordu muszą odczytywać mapę bitową, a nie zapisywać w niej, aby sprawdzić, czy plik istnieje. W przypadku tej operacji rekord główny wymaga jedynie współdzielonej blokady zakresu bajtów.
Wyłączne zamki zakresu bajtów uniemożliwiają dostęp do odczytu i zapisu ze wszystkich innych uchwytów do pliku, dlatego są one używane podczas zapisu w rekordzie. Z drugiej strony blokada zakresu bajtów współdzielonych uniemożliwia wszystkim dojściom zapis, w tym posiadaczowi blokady, ale zezwala wszystkim na odczyt.
Aby zademonstrować użycie blokad zakresu bajtów z plikiem, wszystkie operacje wejścia/wyjścia w tym przykładzie, inne niż inicjalizacja nowego pliku, są wykonywane za pośrednictwem asynchronicznego uchwytu pliku. Można to zobaczyć w funkcji IoRecord w przypadkach IoLock i IoUnlock w instrukcji switch. Funkcje LockFileEx i UnlockFileEx są używane z nakładającym się modelem we/wy, przekazując nakładającą się strukturę do nich z przesunięciem na początek zablokowanego zakresu oraz zdarzenie, które zostanie zasygnalizowane po zablokowaniu tego zakresu, chyba że funkcja zwróci natychmiast.
Po wykonaniu asynchronicznego żądania we/wy, następna operacja w funkcji IoRecord to oczekiwanie na operację w toku. Jest to często nie optymalny scenariusz, gdy wymagana jest maksymalna wydajność i jest używana w tym miejscu dla uproszczenia. W aplikacjach produkcyjnych preferowane jest użycie portów uzupełniania we/wy lub podobnych mechanizmów, ponieważ pozwala to na zwolnienie wątków, aby wykonywały inne zadania przetwarzania w czasie, gdy operacje we/wy są kończone.
Przykład kończy się po wykonaniu NUM_FILEOPS operacji losowych. Każdy wątek zarejestruje stan zakończenia jako warunek błędu lub normalne zakończenie. Należy pamiętać, że nie wszystkie wątki zakończą się w tym samym czasie, w zależności od liczby rdzeni procesora, które ma system hosta, oraz szybkości podsystemu we/wy.