Udostępnij przez


Tworzenie procesora wideo DXVA-HD

Usługa Microsoft DirectX Video Acceleration High Definition (DXVA-HD) używa dwóch podstawowych interfejsów:

  • IDXVAHD_Device. Reprezentuje urządzenie DXVA-HD. Użyj tego interfejsu, aby wykonywać zapytania dotyczące możliwości urządzenia i tworzyć procesor wideo.
  • IDXVAHD_VideoProcessor. Reprezentuje zestaw możliwości przetwarzania wideo. Użyj tego interfejsu, aby wykonać operację blit przetwarzania wideo.

W poniższym kodzie przyjmuje się następujące zmienne globalne:

IDirect3D9Ex            *g_pD3D = NULL;     
IDirect3DDevice9Ex      *g_pD3DDevice = NULL;   // Direct3D device.
IDXVAHD_Device          *g_pDXVAHD = NULL;      // DXVA-HD device.
IDXVAHD_VideoProcessor  *g_pDXVAVP = NULL;      // DXVA-HD video processor.
IDirect3DSurface9       *g_pSurface = NULL;     // Video surface.
        
const D3DFORMAT     RENDER_TARGET_FORMAT = D3DFMT_X8R8G8B8;
const D3DFORMAT     VIDEO_FORMAT         = D3DFMT_X8R8G8B8; 
const UINT          VIDEO_FPS            = 60;
const UINT          VIDEO_WIDTH          = 640;
const UINT          VIDEO_HEIGHT         = 480;

Aby utworzyć procesor wideo DXVA-HD:

  1. Wypełnij strukturę DXVAHD_CONTENT_DESC opisem zawartości wideo. Sterownik używa tych informacji jako wskazówki, aby zoptymalizować możliwości procesora wideo. Struktura nie zawiera pełnego opisu formatu.

        DXVAHD_RATIONAL fps = { VIDEO_FPS, 1 }; 
    
        DXVAHD_CONTENT_DESC desc;
    
        desc.InputFrameFormat = DXVAHD_FRAME_FORMAT_PROGRESSIVE;
        desc.InputFrameRate = fps;
        desc.InputWidth = VIDEO_WIDTH;
        desc.InputHeight = VIDEO_HEIGHT;
        desc.OutputFrameRate = fps;
        desc.OutputWidth = VIDEO_WIDTH;
        desc.OutputHeight = VIDEO_HEIGHT;
    
  2. Wywołaj DXVAHD_CreateDevice, aby utworzyć urządzenie DXVA-HD. Ta funkcja zwraca wskaźnik do interfejsu IDXVAHD_Device.

        hr = DXVAHD_CreateDevice(g_pD3DDevice, &desc, DXVAHD_DEVICE_USAGE_PLAYBACK_NORMAL,
            NULL, &pDXVAHD);
    
  3. Wywołaj IDXVAHD_Device::GetVideoProcessorDeviceCaps. Ta metoda wypełnia strukturę DXVAHD_VPDEVCAPS możliwościami urządzenia. Jeśli potrzebujesz określonych funkcji przetwarzania wideo, takich jak klucz luma lub filtrowanie obrazów, sprawdź ich dostępność przy użyciu tej struktury.

        DXVAHD_VPDEVCAPS caps;
    
        hr = pDXVAHD->GetVideoProcessorDeviceCaps(&caps);
    
  4. Sprawdź, czy urządzenie DXVA-HD obsługuje wymagane formaty wideo wejściowe. W temacie Sprawdzanie obsługiwanych formatów DXVA-HD opisano ten krok bardziej szczegółowo.

  5. Sprawdź, czy urządzenie DXVA-HD obsługuje wymagany format danych wyjściowych. W sekcji Sprawdzanie obsługiwanych formatów DXVA-HD opisano ten krok bardziej szczegółowo.

  6. Przydziel tablicę struktur typu DXVAHD_VPCAPS. Liczba elementów tablicy, które należy przydzielić, jest podawana przez VideoProcessorCount składowej struktury DXVAHD_VPDEVCAPS uzyskanej w kroku 3.

        // Create the array of video processor caps. 
    
        DXVAHD_VPCAPS *pVPCaps = 
            new (std::nothrow) DXVAHD_VPCAPS[ caps.VideoProcessorCount ];
    
        if (pVPCaps == NULL)
        {
            return E_OUTOFMEMORY;
        }
    
  7. Każda struktura DXVAHD_VPCAPS reprezentuje odrębny procesor wideo. Tę tablicę można wykonać w pętli, aby odnaleźć możliwości każdego procesora wideo. Struktura zawiera informacje o możliwościach deinterlacingu, przetwarzania telecine i konwersji częstotliwości klatek procesora wideo.

  8. Wybierz procesor wideo do utworzenia. Element VPGuid struktury DXVAHD_VPCAPS zawiera identyfikator GUID, który jednoznacznie identyfikuje procesor wideo. Przekaż GUID do metody IDXVAHD_Device::CreateVideoProcessor. Metoda zwraca wskaźnik IDXVAHD_VideoProcessor.

        HRESULT hr = pDXVAHD->GetVideoProcessorCaps(
            caps.VideoProcessorCount, pVPCaps);
    
  9. Opcjonalnie wywołaj IDXVAHD_Device::CreateVideoSurface, aby utworzyć tablicę wejściowych powierzchni wideo.

Poniższy przykład kodu przedstawia pełną sekwencję kroków:

// Initializes the DXVA-HD video processor.

// NOTE: The following example makes some simplifying assumptions:
//
// 1. There is a single input stream.
// 2. The input frame rate matches the output frame rate.
// 3. No advanced DXVA-HD features are needed, such as luma keying or IVTC.
// 4. The application uses a single input video surface.

HRESULT InitializeDXVAHD()
{
    if (g_pD3DDevice == NULL)
    {
        return E_FAIL;
    }

    HRESULT hr = S_OK;

    IDXVAHD_Device          *pDXVAHD = NULL;
    IDXVAHD_VideoProcessor  *pDXVAVP = NULL;
    IDirect3DSurface9       *pSurf = NULL;

    DXVAHD_RATIONAL fps = { VIDEO_FPS, 1 }; 

    DXVAHD_CONTENT_DESC desc;

    desc.InputFrameFormat = DXVAHD_FRAME_FORMAT_PROGRESSIVE;
    desc.InputFrameRate = fps;
    desc.InputWidth = VIDEO_WIDTH;
    desc.InputHeight = VIDEO_HEIGHT;
    desc.OutputFrameRate = fps;
    desc.OutputWidth = VIDEO_WIDTH;
    desc.OutputHeight = VIDEO_HEIGHT;

#ifdef USE_SOFTWARE_PLUGIN    
    HMODULE hSWPlugin = LoadLibrary(L"C:\\dxvahdsw.dll");

    PDXVAHDSW_Plugin pSWPlugin = (PDXVAHDSW_Plugin)GetProcAddress(hSWPlugin, "DXVAHDSW_Plugin");

    hr = DXVAHD_CreateDevice(g_pD3DDevice, &desc,DXVAHD_DEVICE_USAGE_PLAYBACK_NORMAL,
        pSWPlugin, &pDXVAHD);
#else
    hr = DXVAHD_CreateDevice(g_pD3DDevice, &desc, DXVAHD_DEVICE_USAGE_PLAYBACK_NORMAL,
        NULL, &pDXVAHD);
#endif
    if (FAILED(hr))
    {
        goto done;
    }

    DXVAHD_VPDEVCAPS caps;

    hr = pDXVAHD->GetVideoProcessorDeviceCaps(&caps);
    if (FAILED(hr))
    {
        goto done;
    }

    // Check whether the device supports the input and output formats.

    hr = CheckInputFormatSupport(pDXVAHD, caps, VIDEO_FORMAT);
    if (FAILED(hr))
    {
        goto done;
    }

    hr = CheckOutputFormatSupport(pDXVAHD, caps, RENDER_TARGET_FORMAT);
    if (FAILED(hr))
    {
        goto done;
    }

    // Create the VP device.
    hr = CreateVPDevice(pDXVAHD, caps, &pDXVAVP);
    if (FAILED(hr))
    {
        goto done;
    }

    // Create the video surface for the primary video stream.
    hr = pDXVAHD->CreateVideoSurface(
        VIDEO_WIDTH,
        VIDEO_HEIGHT,
        VIDEO_FORMAT,
        caps.InputPool,
        0,  // Usage
        DXVAHD_SURFACE_TYPE_VIDEO_INPUT,
        1,      // Number of surfaces to create
        &pSurf, // Array of surface pointers
        NULL
        );

    if (FAILED(hr))
    {
        goto done;
    }


    g_pDXVAHD = pDXVAHD;
    g_pDXVAHD->AddRef();

    g_pDXVAVP = pDXVAVP;
    g_pDXVAVP->AddRef();

    g_pSurface = pSurf;
    g_pSurface->AddRef();

done:
    SafeRelease(&pDXVAHD);
    SafeRelease(&pDXVAVP);
    SafeRelease(&pSurf);
    return hr;
}

Funkcja CreateVPDevice pokazana w tym przykładzie tworzy procesor wideo (kroki 5–7):

// Creates a DXVA-HD video processor.

HRESULT CreateVPDevice(
    IDXVAHD_Device          *pDXVAHD,
    const DXVAHD_VPDEVCAPS& caps,
    IDXVAHD_VideoProcessor  **ppDXVAVP
    )
{
    // Create the array of video processor caps. 
    
    DXVAHD_VPCAPS *pVPCaps = 
        new (std::nothrow) DXVAHD_VPCAPS[ caps.VideoProcessorCount ];

    if (pVPCaps == NULL)
    {
        return E_OUTOFMEMORY;
    }

    HRESULT hr = pDXVAHD->GetVideoProcessorCaps(
        caps.VideoProcessorCount, pVPCaps);

    // At this point, an application could loop through the array and examine
    // the capabilities. For purposes of this example, however, we simply
    // create the first video processor in the list.

    if (SUCCEEDED(hr))
    {
        // The VPGuid member contains the GUID that identifies the video 
        // processor.

        hr = pDXVAHD->CreateVideoProcessor(&pVPCaps[0].VPGuid, ppDXVAVP);
    }

    delete [] pVPCaps;
    return hr;
}

DXVA-HD