Compartilhar via


Usar a API Livy para enviar e executar trabalhos de sessão

Aplica-se a:✅ Engenharia e Ciência de Dados no Microsoft Fabric

Saiba como enviar trabalhos de sessão do Spark usando a API Livy para Engenharia de Dados do Fabric.

Pré-requisitos

A API Livy define um endpoint unificado para operações. Substitua os espaços reservados {Entra_TenantID}, {Entra_ClientID}, {Fabric_WorkspaceID}, {Fabric_LakehouseID} pelos valores apropriados ao seguir os exemplos neste artigo.

Configurar o Visual Studio Code para sua sessão da API Livy

  1. Selecione Configurações do Lakehouse no Fabric Lakehouse.

    Captura de tela mostrando as configurações do Lakehouse.

  2. Navegue até a seção Ponto de acesso do Livy.

    Captura de tela mostrando o ponto de extremidade Livy do Lakehouse e a cadeia de conexão do trabalho de Sessão.

  3. Copie a cadeia de conexão do trabalho de sessão (primeira caixa vermelha na imagem) para o código.

  4. Navegue até o Centro de administração do Microsoft Entra e copie a ID do aplicativo (cliente) e a ID do diretório (locatário) para o seu código.

    Captura de tela mostrando a visão geral do aplicativo Livy API no centro de administração do Microsoft Entra.

Autenticar uma sessão Spark da API Livy usando um token de usuário do Microsoft Entra ou um token SPN do Microsoft Entra

Autenticar uma sessão Spark da API Livy usando um token SPN do Microsoft Entra

  1. Crie um .ipynb notebook no Visual Studio Code e insira o código a seguir.

    import sys
    from msal import ConfidentialClientApplication
    
    # Configuration - Replace with your actual values
    tenant_id = "Entra_TenantID"  # Microsoft Entra tenant ID
    client_id = "Entra_ClientID"  # Service Principal Application ID
    
    # Certificate paths - Update these paths to your certificate files
    certificate_path = "PATH_TO_YOUR_CERTIFICATE.pem"      # Public certificate file
    private_key_path = "PATH_TO_YOUR_PRIVATE_KEY.pem"      # Private key file
    certificate_thumbprint = "YOUR_CERTIFICATE_THUMBPRINT" # Certificate thumbprint
    
    # OAuth settings
    audience = "https://analysis.windows.net/powerbi/api/.default"
    authority = f"https://login.windows.net/{tenant_id}"
    
    def get_access_token(client_id, audience, authority, certificate_path, private_key_path, certificate_thumbprint=None):
        """
        Get an app-only access token for a Service Principal using OAuth 2.0 client credentials flow.
    
        This function uses certificate-based authentication which is more secure than client secrets.
    
        Args:
            client_id (str): The Service Principal's client ID  
            audience (str): The audience for the token (resource scope)
            authority (str): The OAuth authority URL
            certificate_path (str): Path to the certificate file (.pem format)
            private_key_path (str): Path to the private key file (.pem format)
            certificate_thumbprint (str): Certificate thumbprint (optional but recommended)
    
        Returns:
            str: The access token for API authentication
    
        Raises:
            Exception: If token acquisition fails
        """
        try:
            # Read the certificate from PEM file
            with open(certificate_path, "r", encoding="utf-8") as f:
                certificate_pem = f.read()
    
            # Read the private key from PEM file
            with open(private_key_path, "r", encoding="utf-8") as f:
                private_key_pem = f.read()
    
            # Create the confidential client application
            app = ConfidentialClientApplication(
                client_id=client_id,
                authority=authority,
                client_credential={
                    "private_key": private_key_pem,
                    "thumbprint": certificate_thumbprint,
                    "certificate": certificate_pem
                }
            )
    
            # Acquire token using client credentials flow
            token_response = app.acquire_token_for_client(scopes=[audience])
    
            if "access_token" in token_response:
                print("Successfully acquired access token")
                return token_response["access_token"]
            else:
                raise Exception(f"Failed to retrieve token: {token_response.get('error_description', 'Unknown error')}")
    
        except FileNotFoundError as e:
            print(f"Certificate file not found: {e}")
            sys.exit(1)
        except Exception as e:
            print(f"Error retrieving token: {e}", file=sys.stderr)
            sys.exit(1)
    
    # Get the access token
    token = get_access_token(client_id, audience, authority, certificate_path, private_key_path, certificate_thumbprint)
    
    
  2. Execute a célula do notebook. Você deverá ver o token do Microsoft Entra retornado.

    Captura de tela mostrando o token SPN do Microsoft Entra retornado após a execução da célula.

Autenticar uma sessão spark da API livy usando um token de usuário do Microsoft Entra

  1. Crie um .ipynb notebook no Visual Studio Code e insira o código a seguir.

    from msal import PublicClientApplication
    import requests
    import time
    
    # Configuration - Replace with your actual values
    tenant_id = "Entra_TenantID"  # Microsoft Entra tenant ID
    client_id = "Entra_ClientID"  # Application ID (can be the same as above or different)
    
    # Required scopes for Microsoft Fabric API access
    scopes = [
        "https://api.fabric.microsoft.com/Lakehouse.Execute.All",      # Execute operations in lakehouses
        "https://api.fabric.microsoft.com/Lakehouse.Read.All",        # Read lakehouse metadata
        "https://api.fabric.microsoft.com/Item.ReadWrite.All",        # Read/write fabric items
        "https://api.fabric.microsoft.com/Workspace.ReadWrite.All",   # Access workspace operations
        "https://api.fabric.microsoft.com/Code.AccessStorage.All",    # Access storage from code
        "https://api.fabric.microsoft.com/Code.AccessAzureKeyvault.All",     # Access Azure Key Vault
        "https://api.fabric.microsoft.com/Code.AccessAzureDataExplorer.All", # Access Azure Data Explorer
        "https://api.fabric.microsoft.com/Code.AccessAzureDataLake.All",     # Access Azure Data Lake
        "https://api.fabric.microsoft.com/Code.AccessFabric.All"             # General Fabric access
    ]
    
    def get_access_token(tenant_id, client_id, scopes):
        """
        Get an access token using interactive authentication.
    
        This method will open a browser window for user authentication.
    
        Args:
            tenant_id (str): The Microsoft Entra tenant ID
            client_id (str): The application client ID
            scopes (list): List of required permission scopes
    
        Returns:
            str: The access token, or None if authentication fails
        """
        app = PublicClientApplication(
            client_id,
            authority=f"https://login.microsoftonline.com/{tenant_id}"
        )
    
        print("Opening browser for interactive authentication...")
        token_response = app.acquire_token_interactive(scopes=scopes)
    
        if "access_token" in token_response:
            print("Successfully authenticated")
            return token_response["access_token"]
        else:
            print(f"Authentication failed: {token_response.get('error_description', 'Unknown error')}")
            return None
    
    # Uncomment the lines below to use interactive authentication
    token = get_access_token(tenant_id, client_id, scopes)
    print("Access token acquired via interactive login")
    
  2. Execute a célula do notebook. Você deverá ver o token do Microsoft Entra retornado.

    Captura de tela mostrando o token de usuário do Microsoft Entra retornado após a execução da célula.

Criar uma sessão do Spark da API do Livy

  1. Adicione outra célula do notebook e insira este código.

    import json
    import requests
    
    api_base_url = "https://api.fabric.microsoft.com/"  # Base URL for Fabric APIs
    
    # Fabric Resource IDs - Replace with your workspace and lakehouse IDs
    workspace_id = "Fabric_WorkspaceID"
    lakehouse_id = "Fabric_LakehouseID"
    
    # Construct the Livy API session URL
    # URL pattern: {base_url}/v1/workspaces/{workspace_id}/lakehouses/{lakehouse_id}/livyapi/versions/{api_version}/sessions
    livy_api_session_url = (f"{api_base_url}v1/workspaces/{workspace_id}/lakehouses/{lakehouse_id}/"
                           f"livyapi/versions/2023-12-01/sessions")
    
    # Set up authentication headers
    headers = {"Authorization": f"Bearer {token}"}
    
    print(f"Livy API URL: {livy_api_session_url}")
    print("Creating Livy session...")
    
    try:
        # Create a new Livy session with default configuration
        create_livy_session = requests.post(livy_api_session_url, headers=headers, json={})
    
        # Check if the request was successful
        if create_livy_session.status_code == 200:
            session_info = create_livy_session.json()
            print('Livy session creation request submitted successfully')
            print(f'Session Info: {json.dumps(session_info, indent=2)}')
    
            # Extract session ID for future operations
            livy_session_id = session_info['id']
            livy_session_url = f"{livy_api_session_url}/{livy_session_id}"
    
            print(f"Session ID: {livy_session_id}")
            print(f"Session URL: {livy_session_url}")
    
        else:
            print(f"Failed to create session. Status code: {create_livy_session.status_code}")
            print(f"Response: {create_livy_session.text}")
    
    except requests.exceptions.RequestException as e:
        print(f"Network error occurred: {e}")
    except json.JSONDecodeError as e:
        print(f"JSON decode error: {e}")
        print(f"Response text: {create_livy_session.text}")
    except Exception as e:
        print(f"Unexpected error: {e}")
    
  2. Execute a célula do notebook, você verá uma linha impressa à medida que a sessão do Livy é criada.

    Captura de tela mostrando os resultados da primeira execução da célula do notebook.

  3. Você pode verificar se a sessão do Livy foi criada usando o [Visualizar seus trabalhos no hub de monitoramento](#View your jobs in the Monitoring hub).

Integração com ambientes do Fabric

Por padrão, essa sessão da API livy é executada no pool inicial padrão do workspace. Como alternativa, você pode usar Ambientes do Fabric criar, configurar e usar um ambiente no Microsoft Fabric para personalizar o pool do Spark que a sessão da API Livy usa para esses trabalhos do Spark. Para usar um Ambiente Fabric, atualize a célula do notebook anterior com este payload json.

create_livy_session = requests.post(livy_base_url, headers = headers, json = {
    "conf" : {
        "spark.fabric.environmentDetails" : "{\"id\" : \""EnvironmentID""}"}
        }
)

Enviar uma instrução spark.sql usando a sessão do Spark da API Livy

  1. Adicione outra célula do notebook e insira este código.

        # call get session API
    import time
    
    table_name = "green_tripdata_2022"
    
    print("Checking session status...")
    
    # Get current session status
    get_session_response = requests.get(livy_session_url, headers=headers)
    session_status = get_session_response.json()
    print(f"Current session state: {session_status['state']}")
    
    # Wait for session to become idle (ready to accept statements)
    print("Waiting for session to become idle...")
    while session_status["state"] != "idle":
        print(f"   Session state: {session_status['state']} - waiting 5 seconds...")
        time.sleep(5)
        get_session_response = requests.get(livy_session_url, headers=headers)
        session_status = get_session_response.json()
    
    print("Session is now idle and ready to accept statements")
    
    # Execute a Spark SQL statement
    execute_statement_url = f"{livy_session_url}/statements"
    
    # Define your Spark SQL query - Replace with your actual table and query
    payload_data = {
        "code": "spark.sql(\"SELECT * FROM {table_name} WHERE column_name = 'some_value' LIMIT 10\").show()",
        "kind": "spark"  # Type of code (spark, pyspark, sql, etc.)
    }
    
    print("Submitting Spark SQL statement...")
    print(f"Query: {payload_data['code']}")
    
    try:
        # Submit the statement for execution
        execute_statement_response = requests.post(execute_statement_url, headers=headers, json=payload_data)
    
        if execute_statement_response.status_code == 200:
            statement_info = execute_statement_response.json()
            print('Statement submitted successfully')
            print(f"Statement Info: {json.dumps(statement_info, indent=2)}")
    
            # Get statement ID for monitoring
            statement_id = str(statement_info['id'])
            get_statement_url = f"{livy_session_url}/statements/{statement_id}"
    
            print(f"Statement ID: {statement_id}")
    
            # Monitor statement execution
            print("Monitoring statement execution...")
            get_statement_response = requests.get(get_statement_url, headers=headers)
            statement_status = get_statement_response.json()
    
            while statement_status["state"] != "available":
                print(f"   Statement state: {statement_status['state']} - waiting 5 seconds...")
                time.sleep(5)
                get_statement_response = requests.get(get_statement_url, headers=headers)
                statement_status = get_statement_response.json()
    
            # Retrieve and display results
            print("Statement execution completed!")
            if 'output' in statement_status and 'data' in statement_status['output']:
                results = statement_status['output']['data']['text/plain']
                print("Query Results:")
                print(results)
            else:
                print("No output data available")
    
        else:
            print(f"Failed to submit statement. Status code: {execute_statement_response.status_code}")
            print(f"Response: {execute_statement_response.text}")
    
    except Exception as e:
        print(f"Error executing statement: {e}")
    
  2. Execute a célula do notebook, você deverá ver várias linhas incrementais impressas à medida que o trabalho é enviado e os resultados retornados.

    Captura de tela mostrando os resultados da primeira célula do notebook com Spark.sql execução.

Enviar uma segunda instrução spark.sql usando a sessão do Spark da API Livy

  1. Adicione outra célula do notebook e insira este código.

    print("Executing additional Spark SQL statement...")
    
    # Wait for session to be idle again
    get_session_response = requests.get(livy_session_url, headers=headers)
    session_status = get_session_response.json()
    
    while session_status["state"] != "idle":
        print(f"   Waiting for session to be idle... Current state: {session_status['state']}")
        time.sleep(5)
        get_session_response = requests.get(livy_session_url, headers=headers)
        session_status = get_session_response.json()
    
    # Execute another statement - Replace with your actual query
    payload_data = {
        "code": f"spark.sql(\"SELECT COUNT(*) as total_records FROM {table_name}\").show()",
        "kind": "spark"
    }
    
    print(f"Executing query: {payload_data['code']}")
    
    try:
        # Submit the second statement
        execute_statement_response = requests.post(execute_statement_url, headers=headers, json=payload_data)
    
        if execute_statement_response.status_code == 200:
            statement_info = execute_statement_response.json()
            print('Second statement submitted successfully')
    
            statement_id = str(statement_info['id'])
            get_statement_url = f"{livy_session_url}/statements/{statement_id}"
    
            # Monitor execution
            print("Monitoring statement execution...")
            get_statement_response = requests.get(get_statement_url, headers=headers)
            statement_status = get_statement_response.json()
    
            while statement_status["state"] != "available":
                print(f"   Statement state: {statement_status['state']} - waiting 5 seconds...")
                time.sleep(5)
                get_statement_response = requests.get(get_statement_url, headers=headers)
                statement_status = get_statement_response.json()
    
            # Display results
            print("Second statement execution completed!")
            if 'output' in statement_status and 'data' in statement_status['output']:
                results = statement_status['output']['data']['text/plain']
                print("Query Results:")
                print(results)
            else:
                print("No output data available")
    
        else:
            print(f"Failed to submit second statement. Status code: {execute_statement_response.status_code}")
    
    except Exception as e:
        print(f"Error executing second statement: {e}")
    
  2. Execute a célula do notebook, você deverá ver várias linhas incrementais impressas à medida que o trabalho é enviado e os resultados retornados.

    Captura de tela mostrando os resultados da segunda execução da célula do notebook.

Encerrar a sessão do Livy

  1. Adicione outra célula do notebook e insira este código.

    print("Cleaning up Livy session...")
    
    try:
        # Check current session status before deletion
        get_session_response = requests.get(livy_session_url, headers=headers)
        if get_session_response.status_code == 200:
            session_info = get_session_response.json()
            print(f"Session state before deletion: {session_info.get('state', 'unknown')}")
    
        print(f"Deleting session at: {livy_session_url}")
    
        # Delete the session
        delete_response = requests.delete(livy_session_url, headers=headers)
    
        if delete_response.status_code == 200:
            print("Session deleted successfully")
        elif delete_response.status_code == 404:
            print("Session was already deleted or not found")
        else:
            print(f"Delete request completed with status code: {delete_response.status_code}")
            print(f"Response: {delete_response.text}")
    
        print(f"Delete response details: {delete_response}")
    
    except requests.exceptions.RequestException as e:
        print(f"Network error during session deletion: {e}")
    except Exception as e:
        print(f"Error during session cleanup: {e}")
    

Exibir seus trabalhos no hub de monitoramento

Você pode acessar o hub de monitoramento para exibir várias atividades do Apache Spark selecionando Monitorar nos links de navegação do lado esquerdo.

  1. Quando a sessão está em andamento ou no estado concluído, você pode visualizar o status da sessão navegando até Monitorar.

    Captura de tela mostrando envios anteriores da API livy no Hub de Monitoramento.

  2. Selecione e abra o nome da atividade mais recente.

    Captura de tela mostrando a atividade mais recente da API livy no Hub de Monitoramento.

  3. Neste caso de sessão da API Livy, você pode ver seus envios de sessões anteriores, detalhes de execução, versões do Spark e configuração. Observe o status interrompido no canto superior direito.

    Captura de tela mostrando os detalhes da atividade mais recente da API do Livy no hub de Monitoramento.

Para recapitular todo o processo, você precisa de um cliente remoto, como o Visual Studio Code, um token de aplicativo/SPN do Microsoft Entra, URL do ponto de extremidade da API Livy, autenticação no Lakehouse e, por fim, uma API de Sessão Livy.