Este breve tutorial explica como usar o Windows ML para executar o modelo de classificação de imagem ResNet-50 no Windows, detalhando as etapas de aquisição e pré-processamento do modelo. A implementação envolve a seleção dinâmica de provedores de execução para desempenho de inferência otimizado.
O modelo ResNet-50 é um modelo PyTorch destinado à classificação de imagem.
Neste tutorial, você adquirirá o modelo ResNet-50 do Hugging Face e o converterá no formato QDQ ONNX usando o Kit de Ferramentas de IA.
Em seguida, você carregará o modelo, preparará tensores de entrada e executará a inferência usando as APIs do Windows ML, incluindo etapas pós-processamento para aplicar softmax e recuperar as previsões principais.
Aquisição do modelo e pré-processamento
Você pode adquirir o ResNet-50 do Hugging Face (a plataforma onde a comunidade de ML se reúne para colaborar em modelos, conjuntos de dados e aplicativos). Você converterá ResNet-50 no formato QDQ ONNX usando o Kit de Ferramentas de IA (consulte converter modelos no formato ONNX para obter mais informações).
O objetivo deste código de exemplo é aproveitar o runtime do Windows ML para fazer o trabalho pesado.
O runtime do Windows ML será:
- Carregue o modelo.
- Selecione dinamicamente o provedor de execução (EP) preferido fornecido por IHV para o modelo e baixe seu EP sob demanda na Microsoft Store.
- Execute a inferência no modelo usando o EP.
Para referência de API, consulte OrtSessionOptions e a classe ExecutionProviderCatalog .
// Create a new instance of EnvironmentCreationOptions
EnvironmentCreationOptions envOptions = new()
{
logId = "ResnetDemo",
logLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_ERROR
};
// Pass the options by reference to CreateInstanceWithOptions
OrtEnv ortEnv = OrtEnv.CreateInstanceWithOptions(ref envOptions);
// Use Windows ML to download and register Execution Providers
var catalog = Microsoft.Windows.AI.MachineLearning.ExecutionProviderCatalog.GetDefault();
Console.WriteLine("Ensuring and registering execution providers...");
await catalog.EnsureAndRegisterCertifiedAsync();
//Create Onnx session
Console.WriteLine("Creating session ...");
var sessionOptions = new SessionOptions();
// Set EP Selection Policy
sessionOptions.SetEpSelectionPolicy(ExecutionProviderDevicePolicy.MIN_OVERALL_POWER);
winrt::init_apartment();
// Initialize ONNX Runtime
Ort::Env env(ORT_LOGGING_LEVEL_ERROR, "CppConsoleDesktop");
// Use Windows ML to download and register Execution Providers
auto catalog = winrt::Microsoft::Windows::AI::MachineLearning::ExecutionProviderCatalog::GetDefault();
catalog.EnsureAndRegisterCertifiedAsync().get();
// Set the auto EP selection policy
Ort::SessionOptions sessionOptions;
sessionOptions.SetEpSelectionPolicy(OrtExecutionProviderDevicePolicy_MIN_OVERALL_POWER);
# In your application code
import subprocess
import json
import sys
from pathlib import Path
import traceback
import onnxruntime as ort
_winml_instance = None
class WinML:
def __new__(cls, *args, **kwargs):
global _winml_instance
if _winml_instance is None:
_winml_instance = super(WinML, cls).__new__(cls, *args, **kwargs)
_winml_instance._initialized = False
return _winml_instance
def __init__(self):
if self._initialized:
return
self._initialized = True
self._fix_winrt_runtime()
from winui3.microsoft.windows.applicationmodel.dynamicdependency.bootstrap import (
InitializeOptions,
initialize
)
import winui3.microsoft.windows.ai.machinelearning as winml
self._win_app_sdk_handle = initialize(options=InitializeOptions.ON_NO_MATCH_SHOW_UI)
self._win_app_sdk_handle.__enter__()
catalog = winml.ExecutionProviderCatalog.get_default()
self._providers = catalog.find_all_providers()
self._ep_paths : dict[str, str] = {}
for provider in self._providers:
provider.ensure_ready_async().get()
if provider.library_path == '':
continue
self._ep_paths[provider.name] = provider.library_path
self._registered_eps : list[str] = []
def __del__(self):
self._providers = None
self._win_app_sdk_handle.__exit__(None, None, None)
def _fix_winrt_runtime(self):
"""
This function removes the msvcp140.dll from the winrt-runtime package.
So it does not cause issues with other libraries.
"""
from importlib import metadata
site_packages_path = Path(str(metadata.distribution('winrt-runtime').locate_file('')))
dll_path = site_packages_path / 'winrt' / 'msvcp140.dll'
if dll_path.exists():
dll_path.unlink()
def register_execution_providers_to_ort(self) -> list[str]:
import onnxruntime as ort
for name, path in self._ep_paths.items():
if name not in self._registered_eps:
try:
ort.register_execution_provider_library(name, path)
self._registered_eps.append(name)
except Exception as e:
print(f"Failed to register execution provider {name}: {e}", file=sys.stderr)
traceback.print_exc()
return self._registered_eps
WinML().register_execution_providers_to_ort()
session_options = ort.SessionOptions()
session_options.set_provider_selection_policy(ort.OrtExecutionProviderDevicePolicy.MAX_EFFICIENCY)
Compilação de EP
Se o modelo ainda não tiver sido compilado para o EP (o que pode variar dependendo do dispositivo), ele precisará primeiro ser compilado para esse EP. Esse é um processo único. O código de exemplo abaixo o manipula compilando o modelo na primeira execução e armazenando-o localmente. As execuções subsequentes do código captam a versão compilada e executam-na; resultando em inferências rápidas otimizadas.
Para referência de API, consulte o struct Ort::ModelCompilationOptions, o struct Ort::Status e o struct Ort::CompileModel.
// Prepare paths
string executableFolder = Path.GetDirectoryName(Assembly.GetEntryAssembly()!.Location)!;
string labelsPath = Path.Combine(executableFolder, "ResNet50Labels.txt");
string imagePath = Path.Combine(executableFolder, "dog.jpg");
// TODO: Please use AITK Model Conversion tool to download and convert Resnet, and paste the converted path here
string modelPath = @"";
string compiledModelPath = @"";
// Compile the model if not already compiled
bool isCompiled = File.Exists(compiledModelPath);
if (!isCompiled)
{
Console.WriteLine("No compiled model found. Compiling model ...");
using (var compileOptions = new OrtModelCompilationOptions(sessionOptions))
{
compileOptions.SetInputModelPath(modelPath);
compileOptions.SetOutputModelPath(compiledModelPath);
compileOptions.CompileModel();
isCompiled = File.Exists(compiledModelPath);
if (isCompiled)
{
Console.WriteLine("Model compiled successfully!");
}
else
{
Console.WriteLine("Failed to compile the model. Will use original model.");
}
}
}
else
{
Console.WriteLine("Found precompiled model.");
}
var modelPathToUse = isCompiled ? compiledModelPath : modelPath;
// Prepare paths for model and labels
std::filesystem::path executableFolder = ResnetModelHelper::GetExecutablePath().parent_path();
std::filesystem::path labelsPath = executableFolder / "ResNet50Labels.txt";
std::filesystem::path dogImagePath = executableFolder / "dog.jpg";
// TODO: use AITK Model Conversion tool to get resnet and paste the path here
std::filesystem::path modelPath = L"";
std::filesystem::path compiledModelPath = L"";
bool isCompiledModelAvailable = std::filesystem::exists(compiledModelPath);
if (isCompiledModelAvailable)
{
std::cout << "Using compiled model: " << compiledModelPath << std::endl;
}
else
{
std::cout << "No compiled model found, attempting to create compiled model at " << compiledModelPath
<< std::endl;
Ort::ModelCompilationOptions compile_options(env, sessionOptions);
compile_options.SetInputModelPath(modelPath.c_str());
compile_options.SetOutputModelPath(compiledModelPath.c_str());
std::cout << "Starting compile, this may take a few moments..." << std::endl;
Ort::Status compileStatus = Ort::CompileModel(env, compile_options);
if (compileStatus.IsOK())
{
// Calculate the duration in minutes / seconds / milliseconds
std::cout << "Model compiled successfully!" << std::endl;
isCompiledModelAvailable = std::filesystem::exists(compiledModelPath);
}
else
{
std::cerr << "Failed to compile model: " << compileStatus.GetErrorCode() << ", "
<< compileStatus.GetErrorMessage() << std::endl;
std::cerr << "Falling back to uncompiled model" << std::endl;
}
}
std::filesystem::path modelPathToUse = isCompiledModelAvailable ? compiledModelPath : modelPath;
model_path = "path to your original model"
compiled_model_path = "path to your compiled model"
if compiled_model_path.exists():
print("Using compiled model")
else:
print("No compiled model found, attempting to create compiled model at ", compiled_model_path)
model_compiler = ort.ModelCompiler(session_options, model_path)
print("Starting compile, this may take a few moments..." )
try:
model_compiler.compile_to_file(compiled_model_path)
print("Model compiled successfully")
except Exception as e:
print("Model compilation failed:", e)
print("Falling back to uncompiled model")
model_path_to_use = compiled_model_path if compiled_model_path.exists() else model_path
Executando a inferência
A imagem de entrada é convertida em formato de dados tensor e, em seguida, a inferência é executada nela. Embora isso seja típico de todos os códigos que usam o ONNX Runtime, a diferença nesse caso é que se trata do uso do ONNX Runtime diretamente através do Windows ML. O único requisito é adicionar #include <winml/onnxruntime_cxx_api.h> ao código.
Consulte também Converter um modelo com o Kit de Ferramentas de IA para VS Code
Para referência de API, consulte struct Ort::Session, struct Ort::MemoryInfo, struct Ort::Value, struct Ort::AllocatorWithDefaultOptions, struct Ort::RunOptions.
using var session = new InferenceSession(modelPathToUse, sessionOptions);
Console.WriteLine("Preparing input ...");
// Load and preprocess image
var input = await PreprocessImageAsync(await LoadImageFileAsync(imagePath));
// Prepare input tensor
var inputName = session.InputMetadata.First().Key;
var inputTensor = new DenseTensor<float>(
input.ToArray(), // Use the DenseTensor<float> directly
new[] { 1, 3, 224, 224 }, // Shape of the tensor
false // isReversedStride should be explicitly set to false
);
// Bind inputs and run inference
var inputs = new List<NamedOnnxValue>
{
NamedOnnxValue.CreateFromTensor(inputName, inputTensor)
};
Console.WriteLine("Running inference ...");
var results = session.Run(inputs);
for (int i = 0; i < 40; i++)
{
results = session.Run(inputs);
}
// Extract output tensor
var outputName = session.OutputMetadata.First().Key;
var resultTensor = results.First(r => r.Name == outputName).AsEnumerable<float>().ToArray();
// Load labels and print results
var labels = LoadLabels(labelsPath);
PrintResults(labels, resultTensor);
Ort::Session session(env, modelPathToUse.c_str(), sessionOptions);
std::cout << "ResNet model loaded"<< std::endl;
// Load and Preprocess image
winrt::hstring imagePath{ dogImagePath.c_str()};
auto imageFrameResult = ResnetModelHelper::LoadImageFileAsync(imagePath);
auto inputTensorData = ResnetModelHelper::BindSoftwareBitmapAsTensor(imageFrameResult.get());
// Prepare input tensor
auto inputInfo = session.GetInputTypeInfo(0).GetTensorTypeAndShapeInfo();
auto inputType = inputInfo.GetElementType();
auto inputShape = std::array<int64_t, 4>{ 1, 3, 224, 224 };
auto memoryInfo = Ort::MemoryInfo::CreateCpu(OrtArenaAllocator, OrtMemTypeDefault);
std::vector<uint8_t> rawInputBytes;
if (inputType == ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16)
{
auto converted = ResnetModelHelper::ConvertFloat32ToFloat16(inputTensorData);
rawInputBytes.assign(reinterpret_cast<uint8_t*>(converted.data()),
reinterpret_cast<uint8_t*>(converted.data()) + converted.size() * sizeof(uint16_t));
}
else
{
rawInputBytes.assign(reinterpret_cast<uint8_t*>(inputTensorData.data()),
reinterpret_cast<uint8_t*>(inputTensorData.data()) +
inputTensorData.size() * sizeof(float));
}
OrtValue* ortValue = nullptr;
Ort::ThrowOnError(Ort::GetApi().CreateTensorWithDataAsOrtValue(memoryInfo, rawInputBytes.data(),
rawInputBytes.size(), inputShape.data(),
inputShape.size(), inputType, &ortValue));
Ort::Value inputTensor{ ortValue };
const int iterations = 20;
std::cout << "Running inference for " << iterations << " iterations" << std::endl;
auto before = std::chrono::high_resolution_clock::now();
for (int i = 0; i < iterations; i++)
{
//std::cout << "---------------------------------------------" << std::endl;
//std::cout << "Running inference for " << i + 1 << "th time" << std::endl;
//std::cout << "---------------------------------------------"<< std::endl;
std::cout << ".";
// Get input/output names
Ort::AllocatorWithDefaultOptions allocator;
auto inputName = session.GetInputNameAllocated(0, allocator);
auto outputName = session.GetOutputNameAllocated(0, allocator);
std::vector<const char*> inputNames = {inputName.get()};
std::vector<const char*> outputNames = {outputName.get()};
// Run inference
auto outputTensors =
session.Run(Ort::RunOptions{nullptr}, inputNames.data(), &inputTensor, 1, outputNames.data(), 1);
// Extract results
std::vector<float> results;
if (inputType == ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16)
{
auto outputData = outputTensors[0].GetTensorMutableData<uint16_t>();
size_t outputSize = outputTensors[0].GetTensorTypeAndShapeInfo().GetElementCount();
std::vector<uint16_t> outputFloat16(outputData, outputData + outputSize);
results = ResnetModelHelper::ConvertFloat16ToFloat32(outputFloat16);
}
else
{
auto outputData = outputTensors[0].GetTensorMutableData<float>();
size_t outputSize = outputTensors[0].GetTensorTypeAndShapeInfo().GetElementCount();
results.assign(outputData, outputData + outputSize);
}
if (i == iterations - 1)
{
// Load labels and print result
std::cout << "\nOutput for the last iteration"<< std::endl;
auto labels = ResnetModelHelper::LoadLabels(labelsPath);
ResnetModelHelper::PrintResults(labels, results);
}
inputName.release();
outputName.release();
}
std::cout << "---------------------------------------------" << std::endl;
def load_labels(label_file):
with open(label_file, 'r') as f:
labels = [line.strip().split(',')[1] for line in f.readlines()]
return labels
def load_and_preprocess_image(image_path):
img = Image.open(image_path)
if img.mode != 'RGB':
img = img.convert('RGB')
img = img.resize((224, 224))
means = np.array([0.485, 0.456, 0.406]).reshape(1, 1, 3)
stds = np.array([0.229, 0.224, 0.225]).reshape(1, 1, 3)
img_array = np.array(img).astype(np.float32)
img_array = (img_array - means) / stds
img_array = img_array.transpose((2, 0, 1))
img_array = np.expand_dims(img_array, axis=0)
return img_array.astype(np.float32)
session = ort.InferenceSession(
model_path_to_use,
sess_options=session_options,
)
labels = load_labels("path to your labels file")
images_folder = "path to your images' folder"
for image_file in images_folder.iterdir():
print(f"Running inference on image: {image_file}")
print("Preparing input ...")
img_array = load_and_preprocess_image(image_file)
print("Running inference ...")
input_name = session.get_inputs()[0].name
results = session.run(None, {input_name: img_array})[0]
# See the next section for this function's definition
print_results(labels, results, is_logit=False)
Pós-processamento
A função softmax é aplicada à saída bruta retornada e os dados de rótulo são usados para mapear e imprimir os nomes com as cinco maiores probabilidades.
private static void PrintResults(IList<string> labels, IReadOnlyList<float> results)
{
// Apply softmax to the results
float maxLogit = results.Max();
var expScores = results.Select(r => MathF.Exp(r - maxLogit)).ToList(); // stability with maxLogit
float sumExp = expScores.Sum();
var softmaxResults = expScores.Select(e => e / sumExp).ToList();
// Get top 5 results
IEnumerable<(int Index, float Confidence)> topResults = softmaxResults
.Select((value, index) => (Index: index, Confidence: value))
.OrderByDescending(x => x.Confidence)
.Take(5);
// Display results
Console.WriteLine("Top Predictions:");
Console.WriteLine("-------------------------------------------");
Console.WriteLine("{0,-32} {1,10}", "Label", "Confidence");
Console.WriteLine("-------------------------------------------");
foreach (var result in topResults)
{
Console.WriteLine("{0,-32} {1,10:P2}", labels[result.Index], result.Confidence);
}
Console.WriteLine("-------------------------------------------");
}
void PrintResults(const std::vector<std::string>& labels, const std::vector<float>& results) {
// Apply softmax to the results
float maxLogit = *std::max_element(results.begin(), results.end());
std::vector<float> expScores;
float sumExp = 0.0f;
for (float r : results) {
float expScore = std::exp(r - maxLogit);
expScores.push_back(expScore);
sumExp += expScore;
}
std::vector<float> softmaxResults;
for (float e : expScores) {
softmaxResults.push_back(e / sumExp);
}
// Get top 5 results
std::vector<std::pair<int, float>> indexedResults;
for (size_t i = 0; i < softmaxResults.size(); ++i) {
indexedResults.emplace_back(static_cast<int>(i), softmaxResults[i]);
}
std::sort(indexedResults.begin(), indexedResults.end(), [](const auto& a, const auto& b) {
return a.second > b.second;
});
indexedResults.resize(std::min<size_t>(5, indexedResults.size()));
// Display results
std::cout << "Top Predictions:\n";
std::cout << "-------------------------------------------\n";
std::cout << std::left << std::setw(32) << "Label" << std::right << std::setw(10) << "Confidence\n";
std::cout << "-------------------------------------------\n";
for (const auto& result : indexedResults) {
std::cout << std::left << std::setw(32) << labels[result.first]
<< std::right << std::setw(10) << std::fixed << std::setprecision(2) << (result.second * 100) << "%\n";
}
std::cout << "-------------------------------------------\n";
}
def print_results(labels, results, is_logit=False):
def softmax(x):
exp_x = np.exp(x - np.max(x))
return exp_x / exp_x.sum()
results = results.flatten()
if is_logit:
results = softmax(results)
top_k = 5
top_indices = np.argsort(results)[-top_k:][::-1]
print("Top Predictions:")
print("-"*50)
print(f"{'Label':<32} {'Confidence':>10}")
print("-"*50)
for i in top_indices:
print(f"{labels[i]:<32} {results[i]*100:>10.2f}%")
print("-"*50)
Saída
Aqui está um exemplo do tipo de saída que se espera.
285, Egyptian cat with confidence of 0.904274
281, tabby with confidence of 0.0620204
282, tiger cat with confidence of 0.0223081
287, lynx with confidence of 0.00119624
761, remote control with confidence of 0.000487919
Exemplos de código completo
Os exemplos de código completo estão disponíveis no repositório github WindowsAppSDK-Samples. Consulte WindowsML.