Nota
O acesso a esta página requer autorização. Podes tentar iniciar sessão ou mudar de diretório.
O acesso a esta página requer autorização. Podes tentar mudar de diretório.
Este artigo fornece exemplos de consultas KQL que você pode usar interativamente ou em trabalhos KQL para investigar incidentes de segurança e monitorar atividades suspeitas no data lake do Microsoft Sentinel.
Consultas fora da caixa
O Microsoft Sentinel inclui um conjunto de consultas KQL pré-configuradas que pode usar para explorar e analisar dados no data lake. Estas consultas estão disponíveis no editor de consultas KQL, na aba Consultas . Para mais informações, consulte Executar consultas KQL.
Locais anómalos de início de sessão aumentam
Categoria: Atividades de ameaça
Analise a análise de tendências dos registos de início de sessão do Entra ID para detetar alterações invulgares de localização para utilizadores em diferentes aplicações, calculando linhas de tendência de diversidade de localização. Destaca as três principais contas com o maior aumento na variabilidade da localização e lista as suas localizações associadas dentro de janelas de 21 dias.
SigninLogs
| where TimeGenerated > ago(1d)
// Forces Log Analytics to recognize that the query should be run over full time range
| extend locationString = strcat(tostring(LocationDetails["countryOrRegion"]), "/", tostring(LocationDetails["state"]), "/", tostring(LocationDetails["city"]), ";")
| project TimeGenerated, AppDisplayName, UserPrincipalName, locationString
// Create time series
| make-series dLocationCount = dcount(locationString) on TimeGenerated step 1d by UserPrincipalName, AppDisplayName
// Compute best fit line for each entry
| extend (RSquare, Slope, Variance, RVariance, Interception, LineFit) = series_fit_line(dLocationCount)
// Chart the 3 most interesting lines
// A 0-value slope corresponds to an account being completely stable over time for a given Azure Active Directory application
| top 3 by Slope desc
// Extract the set of locations for each top user:
| join kind=inner (
SigninLogs
| extend locationString = strcat(tostring(LocationDetails["countryOrRegion"]), "/", tostring(LocationDetails["state"]), "/", tostring(LocationDetails["city"]), ";")
| summarize locationList = makeset(locationString), threeDayWindowLocationCount = dcount(locationString) by AppDisplayName, UserPrincipalName, timerange = bin(TimeGenerated, 21d)
) on AppDisplayName, UserPrincipalName
| order by UserPrincipalName, timerange asc
| project timerange, AppDisplayName, UserPrincipalName, threeDayWindowLocationCount, locationList
| order by AppDisplayName, UserPrincipalName, timerange asc
| extend timestamp = timerange, AccountCustomEntity = UserPrincipalName
Comportamento anómalo de início de sessão baseado em alterações de localização
Categoria: Anomalias
Identificar comportamentos anómalos de início de sessão com base nas alterações de localização para utilizadores e aplicações do Entra ID, a fim de detetar mudanças súbitas no comportamento.
SigninLogs
| where TimeGenerated > ago(1d)
// Forces Log Analytics to recognize that the query should be run over full time range
| extend locationString = strcat(tostring(LocationDetails["countryOrRegion"]), "/", tostring(LocationDetails["state"]), "/", tostring(LocationDetails["city"]), ";")
| project TimeGenerated, AppDisplayName, UserPrincipalName, locationString
// Create time series
| make-series dLocationCount = dcount(locationString) on TimeGenerated step 1d by UserPrincipalName, AppDisplayName
// Compute best fit line for each entry
| extend (RSquare, Slope, Variance, RVariance, Interception, LineFit) = series_fit_line(dLocationCount)
// Chart the 3 most interesting lines
// A 0-value slope corresponds to an account being completely stable over time for a given Azure Active Directory application
| top 3 by Slope desc
// Extract the set of locations for each top user:
| join kind=inner (
SigninLogs
| extend locationString = strcat(tostring(LocationDetails["countryOrRegion"]), "/", tostring(LocationDetails["state"]), "/", tostring(LocationDetails["city"]), ";")
| summarize locationList = makeset(locationString), threeDayWindowLocationCount = dcount(locationString) by AppDisplayName, UserPrincipalName, timerange = bin(TimeGenerated, 21d)
) on AppDisplayName, UserPrincipalName
| order by UserPrincipalName, timerange asc
| project timerange, AppDisplayName, UserPrincipalName, threeDayWindowLocationCount, locationList
| order by AppDisplayName, UserPrincipalName, timerange asc
| extend timestamp = timerange, AccountCustomEntity = UserPrincipalName
Auditar atividades raras através de aplicação
Categoria: Atividades de ameaça
Encontre aplicações que realizem ações raras (por exemplo, consentimento, concessões) que possam criar privilégio discretamente. Compare o dia atual com os últimos 14 dias de auditorias para identificar novas atividades de auditoria. Útil para rastrear atividade maliciosa relacionada com adições ou remoções de utilizadores/grupos por aplicações Azure e aprovações automáticas.
let starttime = todatetime('{{StartTimeISO}}');
let endtime = todatetime('{{EndTimeISO}}');
let auditLookback = starttime - 14d;
let propertyIgnoreList = dynamic(["TargetId.UserType", "StsRefreshTokensValidFrom", "LastDirSyncTime", "DeviceOSVersion", "CloudDeviceOSVersion", "DeviceObjectVersion"]);
let appIgnoreList = dynamic(["Microsoft Azure AD Group-Based Licensing"]);
let AuditTrail = AuditLogs
| where TimeGenerated between(auditLookback..starttime)
| where isnotempty(tostring(parse_json(tostring(InitiatedBy.app)).displayName))
| extend InitiatedByApp = tostring(parse_json(tostring(InitiatedBy.app)).displayName)
| extend ModProps = TargetResources[0].modifiedProperties
| extend InitiatedByIpAddress = tostring(parse_json(tostring(InitiatedBy.app)).ipAddress)
| extend TargetUserPrincipalName = tolower(tostring(TargetResources[0].userPrincipalName))
| extend TargetResourceName = tolower(tostring(TargetResources[0].displayName))
| mv-expand ModProps
| where isnotempty(tostring(parse_json(tostring(ModProps.newValue))[0]))
| extend PropertyName = tostring(ModProps.displayName), newValue = tostring(parse_json(tostring(ModProps.newValue))[0])
| where PropertyName !in~ (propertyIgnoreList) and (PropertyName !~ "Action Client Name" and newValue !~ "DirectorySync") and (PropertyName !~ "Included Updated Properties" and newValue !~ "LastDirSyncTime")
| where InitiatedByApp !in~ (appIgnoreList) and OperationName !~ "Change user license"
| summarize by OperationName, InitiatedByApp, TargetUserPrincipalName, InitiatedByIpAddress, TargetResourceName, PropertyName;
let AccountMods = AuditLogs
| where TimeGenerated >= starttime
| where isnotempty(tostring(parse_json(tostring(InitiatedBy.app)).displayName))
| extend InitiatedByApp = tostring(parse_json(tostring(InitiatedBy.app)).displayName)
| extend ModProps = TargetResources[0].modifiedProperties
| extend InitiatedByIpAddress = tostring(parse_json(tostring(InitiatedBy.app)).ipAddress)
| extend TargetUserPrincipalName = tolower(tostring(TargetResources[0].userPrincipalName))
| extend TargetResourceName = tolower(tostring(TargetResources[0].displayName))
| mv-expand ModProps
| where isnotempty(tostring(parse_json(tostring(ModProps.newValue))[0]))
| extend PropertyName = tostring(ModProps.displayName), newValue = tostring(parse_json(tostring(ModProps.newValue))[0])
| where PropertyName !in~ (propertyIgnoreList) and (PropertyName !~ "Action Client Name" and newValue !~ "DirectorySync") and (PropertyName !~ "Included Updated Properties" and newValue !~ "LastDirSyncTime")
| where InitiatedByApp !in~ (appIgnoreList) and OperationName !~ "Change user license"
| extend ModifiedProps = pack("PropertyName", PropertyName, "newValue", newValue, "Id", Id, "CorrelationId", CorrelationId)
| summarize StartTimeUtc = min(TimeGenerated), EndTimeUtc = max(TimeGenerated), Activity = make_bag(ModifiedProps) by Type, InitiatedByApp, TargetUserPrincipalName, InitiatedByIpAddress, TargetResourceName, Category, OperationName, PropertyName;
let RareAudits = AccountMods
| join kind=leftanti (
AuditTrail
) on OperationName, InitiatedByApp, InitiatedByIpAddress, TargetUserPrincipalName; //, PropertyName; //uncomment if you want to see Rare Property changes.
RareAudits
| summarize StartTime = min(StartTimeUtc), EndTime = max(EndTimeUtc), make_set(Activity), make_set(PropertyName) by InitiatedByApp, OperationName, TargetUserPrincipalName, InitiatedByIpAddress, TargetResourceName
| order by TargetUserPrincipalName asc, StartTime asc
| extend timestamp = StartTime, AccountCustomEntity = TargetUserPrincipalName, HostCustomEntity = iff(set_PropertyName has_any ('DeviceOSType', 'CloudDeviceOSType'), TargetResourceName, ''), IPCustomEntity = InitiatedByIpAddress
Operações de nível de subscrição rara do Azure
Categoria: Atividades de ameaça
Identificar eventos sensíveis ao nível de subscrição do Azure com base nos Azure Activity Logs. Por exemplo, monitorização baseada no nome de operação "Create or Update Snapshot", que é usada para criar backups, mas pode ser mal utilizada por atacantes para despejar hashes ou extrair informação sensível do disco.
let starttime = 14d;
let endtime = 1d;
// The number of operations above which an IP address is considered an unusual source of role assignment operations
let alertOperationThreshold = 5;
// Add or remove operation names below as per your requirements. For operations lists, please refer to https://learn.microsoft.com/en-us/Azure/role-based-access-control/resource-provider-operations#all
let SensitiveOperationList = dynamic(["microsoft.compute/snapshots/write", "microsoft.network/networksecuritygroups/write", "microsoft.storage/storageaccounts/listkeys/action"]);
let SensitiveActivity = AzureActivity
| where OperationNameValue in~ (SensitiveOperationList) or OperationNameValue hassuffix "listkeys/action"
| where ActivityStatusValue =~ "Success";
SensitiveActivity
| where TimeGenerated between (ago(starttime) .. ago(endtime))
| summarize count() by CallerIpAddress, Caller, OperationNameValue, bin(TimeGenerated, 1d)
| where count_ >= alertOperationThreshold
// Returns all the records from the right side that don't have matches from the left
| join kind=rightanti (
SensitiveActivity
| where TimeGenerated >= ago(endtime)
| summarize StartTimeUtc = min(TimeGenerated), EndTimeUtc = max(TimeGenerated), ActivityTimeStamp = make_list(TimeGenerated), ActivityStatusValue = make_list(ActivityStatusValue), CorrelationIds = make_list(CorrelationId), ResourceGroups = make_list(ResourceGroup), SubscriptionIds = make_list(SubscriptionId), ActivityCountByCallerIPAddress = count() by CallerIpAddress, Caller, OperationNameValue
| where ActivityCountByCallerIPAddress >= alertOperationThreshold
) on CallerIpAddress, Caller, OperationNameValue
| extend Name = tostring(split(Caller, '@', 0)[0]), UPNSuffix = tostring(split(Caller, '@', 1)[0])
Tendência diária de atividade por aplicação no AuditLogs
Categoria: Bases
Nos últimos 14 dias, identifique qualquer operação de "Consentimento à aplicação" que ocorra por um utilizador ou aplicação. Isto pode indicar que as permissões para aceder ao AzureApp listado foram fornecidas a um ator malicioso. Eventos de consentimento para a aplicação, a adição do principal de serviço e a adição de Auth2PermissionGrant devem ser raros. Se disponível, é adicionado contexto adicional a partir dos AuditLogs com base no CorrelationId da mesma conta que realizou o "Consentimento à aplicação".
let starttime = todatetime('{{StartTimeISO}}');
let endtime = todatetime('{{EndTimeISO}}');
let auditLookback = starttime - 14d;
// Setting threshold to 3 as a default, change as needed. Any operation that has been initiated by a user or app more than 3 times in the past 30 days will be exluded
let threshold = 3;
// Helper function to extract relevant fields from AuditLog events
let auditLogEvents = (startTimeSpan:datetime) {
AuditLogs
| where TimeGenerated >= startTimeSpan
| extend ModProps = TargetResources[0].modifiedProperties
| extend IpAddress = iff(isnotempty(tostring(parse_json(tostring(InitiatedBy.user)).ipAddress)),
tostring(parse_json(tostring(InitiatedBy.user)).ipAddress),
tostring(parse_json(tostring(InitiatedBy.app)).ipAddress)
)
| extend InitiatedBy = iff(isnotempty(tostring(parse_json(tostring(InitiatedBy.user)).userPrincipalName)),
tostring(parse_json(tostring(InitiatedBy.user)).userPrincipalName),
tostring(parse_json(tostring(InitiatedBy.app)).displayName)
)
| extend TargetResourceName = tolower(tostring(TargetResources[0].displayName))
| mv-expand ModProps
| extend PropertyName = tostring(ModProps.displayName), newValue = replace('"', "", tostring(ModProps.newValue))
};
// Get just the InitiatedBy and CorrleationId so we can look at associated audit activity
// 2 other operations that can be part of malicious activity in this situation are
// "Add OAuth2PermissionGrant" and "Add service principal", replace the below if you are interested in those as starting points for OperationName
let HistoricalConsent = auditLogEvents(auditLookback)
| where OperationName == "Consent to application"
| summarize StartTimeUtc = min(TimeGenerated), EndTimeUtc = max(TimeGenerated), OperationCount = count()
by InitiatedBy, IpAddress, TargetResourceName, Category, OperationName, PropertyName, newValue, CorrelationId, Id
// Remove comment below to only include operations initiated by a user or app that is above the threshold for the last 30 days
//| where OperationCount > threshold
;
let Correlate = HistoricalConsent
| summarize by InitiatedBy, CorrelationId;
// 2 other operations that can be part of malicious activity in this situation are
// "Add OAuth2PermissionGrant" and "Add service principal", replace the below if you changed the starting OperationName above
let allOtherEvents = auditLogEvents(auditLookback)
| where OperationName != "Consent to application";
// Gather associated activity based on audit activity for "Consent to application" and InitiatedBy and CorrleationId
let CorrelatedEvents = Correlate
| join (allOtherEvents) on InitiatedBy, CorrelationId
| summarize StartTimeUtc = min(TimeGenerated), EndTimeUtc = max(TimeGenerated)
by InitiatedBy, IpAddress, TargetResourceName, Category, OperationName, PropertyName, newValue, CorrelationId, Id
;
// Union the results
let Results = (union isfuzzy=true HistoricalConsent, CorrelatedEvents);
// newValues that are simple semi-colon separated, make those dynamic for easy viewing and Aggregate into the PropertyUpdate set based on CorrelationId and Id(DirectoryId)
Results
| extend newValue = split(newValue, ";")
| extend PropertyUpdate = pack(PropertyName, newValue, "Id", Id)
// Extract scope requested
| extend perms = tostring(parse_json(tostring(PropertyUpdate.["ConsentAction.Permissions"]))[0])
| extend scope = extract('Scope:\\s*([^,\\]]*)', 1, perms)
// Filter out some common openid, and low privilege request scopes - uncomment line below to filter out where no scope is requested
//| where isnotempty(scope)
| where scope !contains 'openid' and scope !in ('user_impersonation', 'User.Read')
| summarize StartTime = min(StartTimeUtc), EndTime = max(EndTimeUtc), PropertyUpdateSet = make_bag(PropertyUpdate), make_set(scope)
by InitiatedBy, IpAddress, TargetResourceName, OperationName, CorrelationId
| extend timestamp = StartTime, AccountCustomEntity = InitiatedBy, IPCustomEntity = IpAddress
// uncommnet below to summarize by app if many results
//| summarize make_set(InitiatedBy), make_set(IpAddress), make_set(PropertyUpdateSet) by TargetResourceName, tostring(set_scope)
Tendência diária de localização por utilizador ou aplicação no LogInLogs
Categoria: Base de Referência
Crie tendências diárias para todos os logins dos utilizadores, número de localizações e utilização da sua aplicação.
SigninLogs
| where TimeGenerated > ago(1d)
| extend locationString = strcat(tostring(LocationDetails["countryOrRegion"]), "/", tostring(LocationDetails["state"]), "/", tostring(LocationDetails["city"]), ";")
| extend Day = format_datetime(TimeGenerated, "yyyy-MM-dd")
| summarize LocationList = make_set(locationString), LocationCount = dcount(locationString), DistinctSourceIp = dcount(IPAddress), LogonCount = count() by Day, AppDisplayName, UserPrincipalName
Tendência diária de tráfego de rede por IP de destino
Categoria: Linha de Base
Crie uma linha de base que inclua bytes e pares distintos para detectar beaconing e exfiltração.
// Daily Network traffic trend Per destination IP along with data transfer stats
CommonSecurityLog
| where TimeGenerated > ago(1d)
| extend Day = format_datetime(TimeGenerated, "yyyy-MM-dd")
| summarize Count = count(), DistinctDestinationIps = dcount(DestinationIP), NoofByesTransferred = sum(SentBytes), NoofBytesReceived = sum(ReceivedBytes) by Day, SourceIP, DeviceVendor
Tendência diária do tráfego de rede por IP de destino com estatísticas de transferência de dados
Categoria: Atividades de ameaça
Identificar o host interno que atingiu o destino de saída, incluindo tendências de volume, estimando o raio da explosão.
// Daily Network traffic trend Per Destination IP along with Data transfer stats
// Frequency - Daily - Maintain 30 days or more history.
CommonSecurityLog
| where TimeGenerated > ago(1d)
| extend Day = format_datetime(TimeGenerated, "yyyy-MM-dd")
| summarize Count = count(), DistinctDestinationIps = dcount(DestinationIP), NoofByesTransferred = sum(SentBytes), NoofBytesReceived = sum(ReceivedBytes) by Day, SourceIP, DeviceVendor
Tendência diária do tráfego de rede por IP de origem
Categoria: Padrão
Crie uma linha de base que inclua bytes e pares distintos para detectar beaconing e exfiltração.
// Daily Network traffic trend Per source IP along with data transfer stats
CommonSecurityLog
| where TimeGenerated > ago(1d)
| extend Day = format_datetime(TimeGenerated, "yyyy-MM-dd")
| summarize Count = count(), DistinctSourceIps = dcount(SourceIP), NoofByesTransferred = sum(SentBytes), NoofBytesReceived = sum(ReceivedBytes) by Day, DestinationIP, DeviceVendor
Tendência diária do tráfego de rede por IP de origem com estatísticas de transferência de dados
Categoria: Atividades de ameaça
As ligações e bytes atuais são avaliados com base na linha de base diária do host para determinar se os comportamentos observados diferem significativamente do padrão pré-estabelecido.
// Daily Network traffic trend Per Destination IP along with Data transfer stats
// Frequency - Daily - Maintain 30 days or more history.
CommonSecurityLog
| where TimeGenerated > ago(1d)
| extend Day = format_datetime(TimeGenerated, "yyyy-MM-dd")
| summarize Count = count(), DistinctDestinationIps = dcount(DestinationIP), NoofByesTransferred = sum(SentBytes), NoofBytesReceived = sum(ReceivedBytes) by Day, SourceIP, DeviceVendor
Tendência diária de localização de início de sessão por utilizador e aplicação
Categoria: Base de Referência
Crie uma linha de base de login para cada utilizador ou aplicação com localização geográfica e IP típicas, permitindo uma deteção de anomalias eficiente e económica em larga escala.
// Daily Location Trend per User, App in SigninLogs
// Frequency - Daily - Maintain 30 days or more history.
SigninLogs
| where TimeGenerated > ago(1d)
| extend locationString = strcat(tostring(LocationDetails["countryOrRegion"]), "/", tostring(LocationDetails["state"]), "/", tostring(LocationDetails["city"]), ";")
| extend Day = format_datetime(TimeGenerated, "yyyy-MM-dd")
| summarize LocationList = make_set(locationString), LocationCount = dcount(locationString), DistinctSourceIp = dcount(IPAddress), LogonCount = count() by Day, AppDisplayName, UserPrincipalName
Tendência diária de execução de processos
Categoria: Linha de Base
Identificar novos processos e prevalência, facilitando a deteção de "novos processos raros".
// Daily ProcessExecution Trend in SecurityEvents
// Frequency - Daily - Maintain 30 days or more history.
SecurityEvent
| where TimeGenerated > ago(1d)
| where EventID == 4688
| extend Day = format_datetime(TimeGenerated, "yyyy-MM-dd")
| summarize Count = count(), DistinctComputers = dcount(Computer), DistinctAccounts = dcount(Account), DistinctParent = dcount(ParentProcessName), NoofCommandLines = dcount(CommandLine) by Day, NewProcessName
Entra ID agente de utilizador raro por aplicação
Categoria: Deteção de anomalias
Estabeleça um referencial do tipo de UserAgent (ou seja, navegador, aplicação de escritório, etc.) que é normalmente usado para uma determinada aplicação, analisando um histórico de vários dias. Depois, pesquisa no dia atual quaisquer desvios deste padrão, ou seja, tipos de UserAgents nunca antes vistos em combinação com esta aplicação.
let minimumAppThreshold = 100;
let timeframe = 1d;
let lookback_timeframe = 7d;
let ExtractBrowserTypeFromUA = (ua:string) {
// Note: these are in a specific order since, for example, Edge contains "Chrome/" and "Edge/" strings.
case(
ua has "Edge/", dynamic({"AgentType": "Browser", "AgentName": "Edge"}),
ua has "Edg/", dynamic({"AgentType": "Browser", "AgentName": "Edge"}),
ua has "Trident/", dynamic({"AgentType": "Browser", "AgentName": "Internet Explorer"}),
ua has "Chrome/" and ua has "Safari/", dynamic({"AgentType": "Browser", "AgentName": "Chrome"}),
ua has "Gecko/" and ua has "Firefox/", dynamic({"AgentType": "Browser", "AgentName": "Firefox"}),
not(ua has "Mobile/") and ua has "Safari/" and ua has "Version/", dynamic({"AgentType": "Browser", "AgentName": "Safari"}),
ua startswith "Dalvik/" and ua has "Android", dynamic({"AgentType": "Browser", "AgentName": "Android Browser"}),
ua startswith "MobileSafari//", dynamic({"AgentType": "Browser", "AgentName": "Mobile Safari"}),
ua has "Mobile/" and ua has "Safari/" and ua has "Version/", dynamic({"AgentType": "Browser", "AgentName": "Mobile Safari"}),
ua has "Mobile/" and ua has "FxiOS/", dynamic({"AgentType": "Browser", "AgentName": "IOS Firefox"}),
ua has "Mobile/" and ua has "CriOS/", dynamic({"AgentType": "Browser", "AgentName": "IOS Chrome"}),
ua has "Mobile/" and ua has "WebKit/", dynamic({"AgentType": "Browser", "AgentName": "Mobile Webkit"}),
//
ua startswith "Excel/", dynamic({"AgentType": "OfficeApp", "AgentName": "Excel"}),
ua startswith "Outlook/", dynamic({"AgentType": "OfficeApp", "AgentName": "Outlook"}),
ua startswith "OneDrive/", dynamic({"AgentType": "OfficeApp", "AgentName": "OneDrive"}),
ua startswith "OneNote/", dynamic({"AgentType": "OfficeApp", "AgentName": "OneNote"}),
ua startswith "Office/", dynamic({"AgentType": "OfficeApp", "AgentName": "Office"}),
ua startswith "PowerPoint/", dynamic({"AgentType": "OfficeApp", "AgentName": "PowerPoint"}),
ua startswith "PowerApps/", dynamic({"AgentType": "OfficeApp", "AgentName": "PowerApps"}),
ua startswith "SharePoint/", dynamic({"AgentType": "OfficeApp", "AgentName": "SharePoint"}),
ua startswith "Word/", dynamic({"AgentType": "OfficeApp", "AgentName": "Word"}),
ua startswith "Visio/", dynamic({"AgentType": "OfficeApp", "AgentName": "Visio"}),
ua startswith "Whiteboard/", dynamic({"AgentType": "OfficeApp", "AgentName": "Whiteboard"}),
ua =~ "Mozilla/5.0 (compatible; MSAL 1.0)", dynamic({"AgentType": "OfficeApp", "AgentName": "Office Telemetry"}),
//
ua has ".NET CLR", dynamic({"AgentType": "Custom", "AgentName": "Dotnet"}),
ua startswith "Java/", dynamic({"AgentType": "Custom", "AgentName": "Java"}),
ua startswith "okhttp/", dynamic({"AgentType": "Custom", "AgentName": "okhttp"}),
ua has "Drupal/", dynamic({"AgentType": "Custom", "AgentName": "Drupal"}),
ua has "PHP/", dynamic({"AgentType": "Custom", "AgentName": "PHP"}),
ua startswith "curl/", dynamic({"AgentType": "Custom", "AgentName": "curl"}),
ua has "python-requests", dynamic({"AgentType": "Custom", "AgentName": "Python"}),
pack("AgentType", "Other", "AgentName", extract(@"^([^/]*)/", 1, ua))
)
};
// Query to obtain 'simplified' user agents in a given timespan.
let QueryUserAgents = (start_time:timespan, end_time:timespan) {
union withsource=tbl_name AADNonInteractiveUserSignInLogs, SigninLogs
| where TimeGenerated >= ago(start_time)
| where TimeGenerated < ago(end_time)
| where ResultType == 0 // Only look at succesful logins
| extend ParsedUserAgent = ExtractBrowserTypeFromUA(UserAgent)
| extend UserAgentType = tostring(ParsedUserAgent.AgentType)
| extend UserAgentName = tostring(ParsedUserAgent.AgentName)
//| extend SimpleUserAgent=strcat(UserAgentType,"_",UserAgentName)
| extend SimpleUserAgent = UserAgentType
| where not(isempty(UserAgent))
| where not(isempty(AppId))
};
// Get baseline usage per application.
let BaselineUserAgents = materialize(
QueryUserAgents(lookback_timeframe + timeframe, timeframe)
| summarize RequestCount = count() by AppId, AppDisplayName, SimpleUserAgent
);
let BaselineSummarizedAgents = (
BaselineUserAgents
| summarize BaselineUAs = make_set(SimpleUserAgent), BaselineRequestCount = sum(RequestCount) by AppId, AppDisplayName
);
QueryUserAgents(timeframe, 0d)
| summarize count() by AppId, AppDisplayName, UserAgent, SimpleUserAgent
| join kind=leftanti BaselineUserAgents on AppId, AppDisplayName, SimpleUserAgent
| join BaselineSummarizedAgents on AppId, AppDisplayName
| where BaselineRequestCount > minimumAppThreshold // Search only for actively used applications.
// Get back full original requests.
| join (QueryUserAgents(timeframe, 0d)) on AppId, UserAgent
| project-away ParsedUserAgent, UserAgentName
| project-reorder TimeGenerated, AppDisplayName, UserPrincipalName, UserAgent, BaselineUAs
// Begin allow-list.
// End allow-list.
| summarize count() by UserPrincipalName, AppDisplayName, AppId, UserAgentType, SimpleUserAgent, UserAgent
Correspondência de IOC no registo de rede
Categoria: Atividades de ameaça
Identifique quaisquer indicadores de comprometimento IP (IOCs) a partir da inteligência de ameaças (TI), pesquisando correspondências no CommonSecurityLog.
let IPRegex = '[0-9]{1,3}\\.[0-9]{1,3}\\.[0-9]{1,3}\\.[0-9]{1,3}';
let dt_lookBack = 1h; // Look back 1 hour for CommonSecurityLog events
let ioc_lookBack = 14d; // Look back 14 days for threat intelligence indicators
// Fetch threat intelligence indicators related to IP addresses
let IP_Indicators = ThreatIntelIndicators
//extract key part of kv pair
| extend IndicatorType = replace(@"\[|\]|\""", "", tostring(split(ObservableKey, ":", 0)))
| where IndicatorType in ("ipv4-addr", "ipv6-addr", "network-traffic")
| extend NetworkSourceIP = toupper(ObservableValue)
| extend TrafficLightProtocolLevel = tostring(parse_json(AdditionalFields).TLPLevel)
| where TimeGenerated >= ago(ioc_lookBack)
| extend TI_ipEntity = iff(isnotempty(NetworkSourceIP), NetworkSourceIP, NetworkSourceIP)
| extend TI_ipEntity = iff(isempty(TI_ipEntity) and isnotempty(NetworkSourceIP), NetworkSourceIP, TI_ipEntity)
| where ipv4_is_private(TI_ipEntity) == false and TI_ipEntity !startswith "fe80" and TI_ipEntity !startswith "::" and TI_ipEntity !startswith "127."
| summarize LatestIndicatorTime = arg_max(TimeGenerated, *) by Id, ObservableValue
| where IsActive and (ValidUntil > now() or isempty(ValidUntil));
// Perform a join between IP indicators and CommonSecurityLog events
IP_Indicators
| project-reorder *, Tags, TrafficLightProtocolLevel, NetworkSourceIP, TI_ipEntity
// Use innerunique to keep performance fast and result set low, as we only need one match to indicate potential malicious activity that needs investigation
| join kind=innerunique (
CommonSecurityLog
| where TimeGenerated >= ago(dt_lookBack)
| extend MessageIP = extract(IPRegex, 0, Message)
| extend CS_ipEntity = iff((not(ipv4_is_private(SourceIP)) and isnotempty(SourceIP)), SourceIP, DestinationIP)
| extend CS_ipEntity = iff(isempty(CS_ipEntity) and isnotempty(MessageIP), MessageIP, CS_ipEntity)
| extend CommonSecurityLog_TimeGenerated = TimeGenerated
)
on $left.TI_ipEntity == $right.CS_ipEntity
// Filter out logs that occurred after the expiration of the corresponding indicator
| where CommonSecurityLog_TimeGenerated < ValidUntil
// Group the results by IndicatorId and CS_ipEntity, and keep the log entry with the latest timestamp
| summarize CommonSecurityLog_TimeGenerated = arg_max(CommonSecurityLog_TimeGenerated, *) by Id, CS_ipEntity
// Select the desired output fields
| project timestamp = CommonSecurityLog_TimeGenerated, SourceIP, DestinationIP, MessageIP, Message, DeviceVendor, DeviceProduct, Id, ValidUntil, Confidence, TI_ipEntity, CS_ipEntity, LogSeverity, DeviceAction
Novos processos observados nas últimas 24 horas
Categoria: Atividades de ameaça
Novos processos em ambientes estáveis podem indicar atividade maliciosa. Analisar sessões de início onde estes binários foram executados pode ajudar a identificar ataques.
let starttime = todatetime('{{StartTimeISO}}');
let endtime = todatetime('{{EndTimeISO}}');
let lookback = starttime - 14d;
let ProcessCreationEvents = () {
SecurityEvent
| where TimeGenerated between(lookback..endtime)
| where EventID == 4688
| project
TimeGenerated,
Computer,
Account,
FileName = tostring(split(NewProcessName, '\\')[-1]),
NewProcessName,
ProcessCommandLine = CommandLine,
InitiatingProcessFileName = ParentProcessName
};
ProcessCreationEvents()
| where TimeGenerated between(lookback..starttime)
| summarize HostCount = dcount(Computer) by FileName
| join kind=rightanti (
ProcessCreationEvents()
| where TimeGenerated between(starttime..endtime)
| summarize
StartTime = min(TimeGenerated),
EndTime = max(TimeGenerated),
Computers = make_set(Computer, 1000),
HostCount = dcount(Computer)
by Account, NewProcessName, FileName, ProcessCommandLine, InitiatingProcessFileName
) on FileName
| extend timestamp = StartTime
| extend NTDomain = tostring(split(Account, '\\', 0)[0]), Name = tostring(split(Account, '\\', 1)[0])
| extend Account_0_Name = Name
| extend Account_0_NTDomain = NTDomain
Operação de ficheiros SharePoint através de IPs nunca antes vistos
Categoria: Atividades de ameaça
Identificar anomalias usando o comportamento do utilizador, definindo um limiar para alterações significativas nas atividades de upload/download de ficheiros a partir de novos endereços IP. Estabelece uma linha base de comportamento típico, compara-a com a atividade recente e assinala desvios que excedam um limiar padrão de 25.
// Define a threshold for significant deviations
let threshold = 25;
// Define the name for the SharePoint File Operation record type
let szSharePointFileOperation = "SharePointFileOperation";
// Define an array of SharePoint operations of interest
let szOperations = dynamic(["FileDownloaded", "FileUploaded"]);
// Define the start and end time for the analysis period
let starttime = 14d;
let endtime = 1d;
// Define a baseline of normal user behavior
let userBaseline = OfficeActivity
| where TimeGenerated between(ago(starttime) .. ago(endtime))
| where RecordType =~ szSharePointFileOperation
| where Operation in~ (szOperations)
| where isnotempty(UserAgent)
| summarize Count = count() by UserId, Operation, Site_Url, ClientIP
| summarize AvgCount = avg(Count) by UserId, Operation, Site_Url, ClientIP;
// Get recent user activity
let recentUserActivity = OfficeActivity
| where TimeGenerated > ago(endtime)
| where RecordType =~ szSharePointFileOperation
| where Operation in~ (szOperations)
| where isnotempty(UserAgent)
| summarize StartTimeUtc = min(TimeGenerated), EndTimeUtc = max(TimeGenerated), RecentCount = count() by UserId, UserType, Operation, Site_Url, ClientIP, OfficeObjectId, OfficeWorkload, UserAgent;
// Join the baseline and recent activity, and calculate the deviation
let UserBehaviorAnalysis = userBaseline
| join kind=inner (recentUserActivity) on UserId, Operation, Site_Url, ClientIP
| extend Deviation = abs(RecentCount - AvgCount) / AvgCount;
// Filter for significant deviations
UserBehaviorAnalysis
| where Deviation > threshold
| project StartTimeUtc, EndTimeUtc, UserId, UserType, Operation, ClientIP, Site_Url, OfficeObjectId, OfficeWorkload, UserAgent, Deviation, Count = RecentCount
| order by Count desc, ClientIP asc, Operation asc, UserId asc
| extend AccountName = tostring(split(UserId, "@")[0]), AccountUPNSuffix = tostring(split(UserId, "@")[1])
potencial de beaconing de rede em Palo Alto
Categoria: Atividades de ameaça
Identificar padrões de beaconing a partir dos registos de tráfego da Palo Alto Networks com base em padrões recorrentes de delta de tempo. A consulta utiliza várias funções KQL para calcular os deltas de tempo e depois compara-a com o total de eventos observados num dia para encontrar a percentagem de beaconing.
let starttime = 2d;
let endtime = 1d;
let TimeDeltaThreshold = 25;
let TotalEventsThreshold = 30;
let MostFrequentTimeDeltaThreshold = 25;
let PercentBeaconThreshold = 80;
CommonSecurityLog
| where DeviceVendor == "Palo Alto Networks" and Activity == "TRAFFIC"
| where TimeGenerated between (startofday(ago(starttime)) .. startofday(ago(endtime)))
| where ipv4_is_private(DestinationIP) == false
| project TimeGenerated, DeviceName, SourceUserID, SourceIP, SourcePort, DestinationIP, DestinationPort, ReceivedBytes, SentBytes
| sort by SourceIP asc, TimeGenerated asc, DestinationIP asc, DestinationPort asc
| serialize
| extend nextTimeGenerated = next(TimeGenerated, 1), nextSourceIP = next(SourceIP, 1)
| extend TimeDeltainSeconds = datetime_diff('second', nextTimeGenerated, TimeGenerated)
| where SourceIP == nextSourceIP
//Allowlisting criteria/ threshold criteria
| where TimeDeltainSeconds > TimeDeltaThreshold
| summarize count(), sum(ReceivedBytes), sum(SentBytes) by TimeDeltainSeconds, bin(TimeGenerated, 1h), DeviceName, SourceUserID, SourceIP, DestinationIP, DestinationPort
| summarize (MostFrequentTimeDeltaCount, MostFrequentTimeDeltainSeconds) = arg_max(count_, TimeDeltainSeconds), TotalEvents = sum(count_), TotalSentBytes = sum(sum_SentBytes), TotalReceivedBytes = sum(sum_ReceivedBytes) by bin(TimeGenerated, 1h), DeviceName, SourceUserID, SourceIP, DestinationIP, DestinationPort
| where TotalEvents > TotalEventsThreshold and MostFrequentTimeDeltaCount > MostFrequentTimeDeltaThreshold
| extend BeaconPercent = MostFrequentTimeDeltaCount / toreal(TotalEvents) * 100
| where BeaconPercent > PercentBeaconThreshold
Login suspeito do Windows fora do horário normal
Categoria: Deteção de anomalias
Identifique eventos invulgares de início de sessão no Windows fora das horas normais do utilizador, comparando com a atividade de início de sessão dos últimos 14 dias, assinalando anomalias com base em padrões históricos.
let starttime = todatetime('{{StartTimeISO}}');
let endtime = todatetime('{{EndTimeISO}}');
let lookback = starttime - 14d;
let AllLogonEvents = materialize(
SecurityEvent
| where TimeGenerated between (lookback..starttime)
| where EventID in (4624, 4625)
| where LogonTypeName in~ ('2 - Interactive', '10 - RemoteInteractive')
| where AccountType =~ 'User'
| extend HourOfLogin = hourofday(TimeGenerated), DayNumberofWeek = dayofweek(TimeGenerated)
| extend DayofWeek = case(
DayNumberofWeek == "00:00:00", "Sunday",
DayNumberofWeek == "1.00:00:00", "Monday",
DayNumberofWeek == "2.00:00:00", "Tuesday",
DayNumberofWeek == "3.00:00:00", "Wednesday",
DayNumberofWeek == "4.00:00:00", "Thursday",
DayNumberofWeek == "5.00:00:00", "Friday",
DayNumberofWeek == "6.00:00:00", "Saturday", "InvalidTimeStamp"
)
// map the most common ntstatus codes
| extend StatusDesc = case(
Status =~ "0x80090302", "SEC_E_UNSUPPORTED_FUNCTION",
Status =~ "0x80090308", "SEC_E_INVALID_TOKEN",
Status =~ "0x8009030E", "SEC_E_NO_CREDENTIALS",
Status =~ "0xC0000008", "STATUS_INVALID_HANDLE",
Status =~ "0xC0000017", "STATUS_NO_MEMORY",
Status =~ "0xC0000022", "STATUS_ACCESS_DENIED",
Status =~ "0xC0000034", "STATUS_OBJECT_NAME_NOT_FOUND",
Status =~ "0xC000005E", "STATUS_NO_LOGON_SERVERS",
Status =~ "0xC000006A", "STATUS_WRONG_PASSWORD",
Status =~ "0xC000006D", "STATUS_LOGON_FAILURE",
Status =~ "0xC000006E", "STATUS_ACCOUNT_RESTRICTION",
Status =~ "0xC0000073", "STATUS_NONE_MAPPED",
Status =~ "0xC00000FE", "STATUS_NO_SUCH_PACKAGE",
Status =~ "0xC000009A", "STATUS_INSUFFICIENT_RESOURCES",
Status =~ "0xC00000DC", "STATUS_INVALID_SERVER_STATE",
Status =~ "0xC0000106", "STATUS_NAME_TOO_LONG",
Status =~ "0xC000010B", "STATUS_INVALID_LOGON_TYPE",
Status =~ "0xC000015B", "STATUS_LOGON_TYPE_NOT_GRANTED",
Status =~ "0xC000018B", "STATUS_NO_TRUST_SAM_ACCOUNT",
Status =~ "0xC0000224", "STATUS_PASSWORD_MUST_CHANGE",
Status =~ "0xC0000234", "STATUS_ACCOUNT_LOCKED_OUT",
Status =~ "0xC00002EE", "STATUS_UNFINISHED_CONTEXT_DELETED",
EventID == 4624, "Success",
"See - https://docs.microsoft.com/openspecs/windows_protocols/ms-erref/596a1078-e883-4972-9bbc-49e60bebca55"
)
| extend SubStatusDesc = case(
SubStatus =~ "0x80090325", "SEC_E_UNTRUSTED_ROOT",
SubStatus =~ "0xC0000008", "STATUS_INVALID_HANDLE",
SubStatus =~ "0xC0000022", "STATUS_ACCESS_DENIED",
SubStatus =~ "0xC0000064", "STATUS_NO_SUCH_USER",
SubStatus =~ "0xC000006A", "STATUS_WRONG_PASSWORD",
SubStatus =~ "0xC000006D", "STATUS_LOGON_FAILURE",
SubStatus =~ "0xC000006E", "STATUS_ACCOUNT_RESTRICTION",
SubStatus =~ "0xC000006F", "STATUS_INVALID_LOGON_HOURS",
SubStatus =~ "0xC0000070", "STATUS_INVALID_WORKSTATION",
SubStatus =~ "0xC0000071", "STATUS_PASSWORD_EXPIRED",
SubStatus =~ "0xC0000072", "STATUS_ACCOUNT_DISABLED",
SubStatus =~ "0xC0000073", "STATUS_NONE_MAPPED",
SubStatus =~ "0xC00000DC", "STATUS_INVALID_SERVER_STATE",
SubStatus =~ "0xC0000133", "STATUS_TIME_DIFFERENCE_AT_DC",
SubStatus =~ "0xC000018D", "STATUS_TRUSTED_RELATIONSHIP_FAILURE",
SubStatus =~ "0xC0000193", "STATUS_ACCOUNT_EXPIRED",
SubStatus =~ "0xC0000380", "STATUS_SMARTCARD_WRONG_PIN",
SubStatus =~ "0xC0000381", "STATUS_SMARTCARD_CARD_BLOCKED",
SubStatus =~ "0xC0000382", "STATUS_SMARTCARD_CARD_NOT_AUTHENTICATED",
SubStatus =~ "0xC0000383", "STATUS_SMARTCARD_NO_CARD",
SubStatus =~ "0xC0000384", "STATUS_SMARTCARD_NO_KEY_CONTAINER",
SubStatus =~ "0xC0000385", "STATUS_SMARTCARD_NO_CERTIFICATE",
SubStatus =~ "0xC0000386", "STATUS_SMARTCARD_NO_KEYSET",
SubStatus =~ "0xC0000387", "STATUS_SMARTCARD_IO_ERROR",
SubStatus =~ "0xC0000388", "STATUS_DOWNGRADE_DETECTED",
SubStatus =~ "0xC0000389", "STATUS_SMARTCARD_CERT_REVOKED",
EventID == 4624, "Success",
"See - https://docs.microsoft.com/openspecs/windows_protocols/ms-erref/596a1078-e883-4972-9bbc-49e60bebca55"
)
| project StartTime = TimeGenerated, DayofWeek, HourOfLogin, EventID, Activity, IpAddress, WorkstationName, Computer, TargetUserName, TargetDomainName, ProcessName, SubjectUserName, PrivilegeList, LogonTypeName, StatusDesc, SubStatusDesc
);
AllLogonEvents
| where TargetDomainName !in ("Window Manager", "Font Driver Host")
| summarize max(HourOfLogin), min(HourOfLogin), historical_DayofWeek = make_set(DayofWeek, 10) by TargetUserName
| join kind=inner (
AllLogonEvents
| where StartTime between(starttime..endtime)
) on TargetUserName
// Filtering for logon events based on range of max and min of historical logon hour values seen
| where HourOfLogin > max_HourOfLogin or HourOfLogin < min_HourOfLogin
// Also populating additional column showing historical days of week when logon was seen
| extend historical_DayofWeek = tostring(historical_DayofWeek)
| summarize Total = count(), max(HourOfLogin), min(HourOfLogin), current_DayofWeek = make_set(DayofWeek, 10), StartTime = max(StartTime), EndTime = min(StartTime), SourceIP = make_set(IpAddress, 10000), SourceHost = make_set(WorkstationName, 10000), SubjectUserName = make_set(SubjectUserName, 10000), HostLoggedOn = make_set(Computer, 10000) by EventID, Activity, TargetDomainName, TargetUserName, ProcessName, LogonTypeName, StatusDesc, SubStatusDesc, historical_DayofWeek
| extend historical_DayofWeek = todynamic(historical_DayofWeek)
| extend timestamp = StartTime, NTDomain = split(TargetUserName, '\\', 0)[0], Name = split(TargetUserName, '\\', 1)[0]
| extend Account_0_NTDomain = NTDomain
| extend Account_0_Name = Name
Exemplos adicionais de consultas
As seguintes consultas de exemplo podem ser usadas para explorar e analisar dados no lago de dados Microsoft Sentinel.
Identificar possíveis ameaças internas
Detete o acesso histórico a arquivos de documentos confidenciais em pontos de extremidade correlacionando a atividade de arquivos com o rótulo de sensibilidade do Microsoft Purview, por exemplo, Confidencial, Altamente Confidencial ou Restrito. Use esta consulta para descobrir sinais de exfiltração de dados, violações de políticas ou comportamento suspeito do usuário que podem ter passado despercebidos durante a janela de tempo original de 90 a 180 dias.
DeviceFileEvents
| where Timestamp between (datetime_add("day", -180, now()) .. datetime_add("day", -90, now()))
| where FileName endswith ".docx" or FileName endswith ".pdf" or FileName endswith ".xlsx"
| where FolderPath contains "Confidential" or FolderPath contains "Sensitive" or FolderPath contains "Restricted"
| where ActionType in ("FileAccessed", "FileRead", "FileModified", "FileCopied", "FileMoved")
| extend User = tostring(InitiatingProcessAccountName)
| summarize AccessCount = count(), FirstAccess = min(Timestamp), LastAccess = max(Timestamp) by FileName, FolderPath, User
| sort by AccessCount desc
Investigue possíveis escalonamentos de privilégios ou ações administrativas não autorizadas
Identifique os usuários que entraram com êxito e executaram operações confidenciais, como "adicionar entidade de serviço" ou "gerenciamento de certificados e segredos" entre 90 e 180 dias atrás. Essa consulta vincula eventos de entrada individuais com logs de auditoria correspondentes para fornecer visibilidade detalhada de cada ação. Os resultados incluem a identidade do usuário, o endereço IP e os aplicativos acessados, permitindo a investigação granular de comportamentos potencialmente arriscados.
AuditLogs
| where TimeGenerated between(ago(180d)..ago(90d))
| where OperationName has_any ("Add service principal", "Certificates and secrets management")
| extend Actor = tostring(parse_json(tostring(InitiatedBy.user)).userPrincipalName)
| project AuditTime = TimeGenerated, Actor, OperationName
| join kind=inner (
SigninLogs
| where ResultType == 0 and TimeGenerated between(ago(180d)..ago(90d))
| project LoginTime = TimeGenerated, Identity, IPAddress, AppDisplayName
) on $left.Actor == $right.Identity
| project AuditTime, Actor, OperationName, LoginTime, IPAddress, AppDisplayName
| sort by Actor asc, LoginTime desc
Investigue ataques lentos de força bruta
Detete endereços IP com um elevado número de tentativas de início de sessão falhadas e códigos de erro específicos provenientes de vários utilizadores únicos.
let relevantErrorCodes = dynamic([50053, 50126, 50055, 50057, 50155, 50105, 50133, 50005, 50076, 50079, 50173, 50158, 50072, 50074, 53003, 53000, 53001, 50129]);
SigninLogs
| where TimeGenerated >= ago(180d)
| where ResultType in (relevantErrorCodes)
| extend OS = tostring(parse_json(DeviceDetail).operatingSystem)
| project TimeGenerated, IPAddress, Location, OS, UserPrincipalName, ResultType, ResultDescription
| summarize FailedAttempts = count(), UniqueUsers = dcount(UserPrincipalName) by IPAddress, Location, OS
| where FailedAttempts > 5 and UniqueUsers > 5
| order by FailedAttempts desc
Consultas de exemplo para trabalhos KQL
As consultas a seguir podem ser usadas em trabalhos do KQL para automatizar investigações e tarefas de monitoramento no data lake do Microsoft Sentinel.
Investigação de incidente de ataque de força bruta
Enriqueça os logs de entrada com logs de rede para investigação de incidentes de ataque de força bruta.
// Attacker IPs from signin failures (enriched with domains)
let relevantErrorCodes = dynamic([50053, 50126, 50055, 50057, 50155, 50105, 50133, 50005, 50076, 50079, 50173, 50158, 50072, 50074, 53003, 53000, 53001, 50129]);
let attackerSigninData = SigninLogs
| where ResultType in (relevantErrorCodes)
| summarize FailedAttempts = count(), Domains = make_set(UserPrincipalName, 50) by IPAddress
| where FailedAttempts > 5;
// Extract firewall logs where src or dst IP matches attacker IPs
let matchedFirewall = CommonSecurityLog
| extend
src_ip = SourceIP,
dst_ip = DestinationIP
| extend EventIP = coalesce(src_ip, dst_ip)
| project EventTime = TimeGenerated, EventIP, DeviceName, MessageID = DeviceEventClassID, Message = AdditionalExtensions;
// Join to enrich firewall logs with domain data
matchedFirewall
| join kind=leftouter (attackerSigninData) on $left.EventIP == $right.IPAddress
| project FirewallTime = EventTime, EventIP, DeviceName, MessageID, Message, SigninDomains = tostring(Domains)
| order by FirewallTime desc
Atividade histórica envolvendo endereços IP de informações sobre ameaças
Descubra a atividade histórica da rede envolvendo endereços IP a partir de informações sobre ameaças, ajudando a rastrear a exposição potencial ou o comprometimento que ocorreu há 3 a 6 meses.
let IPRegex = '[0-9]{1,3}\\.[0-9]{1,3}\\.[0-9]{1,3}\\.[0-9]{1,3}';
let dt_start = ago(180d);
let dt_end = ago(90d);
let ioc_lookBack = 180d;
let IP_Indicators = ThreatIntelIndicators
| extend IndicatorType = replace(@"\[|\]|\""", "", tostring(split(ObservableKey, ":", 0)))
| where IndicatorType in ("ipv4-addr", "ipv6-addr", "network-traffic")
| extend NetworkSourceIP = toupper(ObservableValue)
| extend TrafficLightProtocolLevel = tostring(parse_json(AdditionalFields).TLPLevel)
| where TimeGenerated >= dt_start
| extend TI_ipEntity = iff(isnotempty(NetworkSourceIP), NetworkSourceIP, NetworkSourceIP)
| extend TI_ipEntity = iff(isempty(TI_ipEntity) and isnotempty(NetworkSourceIP), NetworkSourceIP, TI_ipEntity)
| where ipv4_is_private(TI_ipEntity) == false
and TI_ipEntity !startswith "fe80"
and TI_ipEntity !startswith "::"
and TI_ipEntity !startswith "127."
| where IsActive and (ValidUntil > dt_start or isempty(ValidUntil));
IP_Indicators
| project-reorder *, Tags, TrafficLightProtocolLevel, NetworkSourceIP, Type, TI_ipEntity
| join kind=innerunique (
CommonSecurityLog
| where TimeGenerated between (dt_start .. dt_end)
| extend MessageIP = extract(IPRegex, 0, Message)
| extend CS_ipEntity = iff((not(ipv4_is_private(SourceIP)) and isnotempty(SourceIP)), SourceIP, DestinationIP)
| extend CS_ipEntity = iff(isempty(CS_ipEntity) and isnotempty(MessageIP), MessageIP, CS_ipEntity)
| extend CommonSecurityLog_TimeGenerated = TimeGenerated
)
on $left.TI_ipEntity == $right.CS_ipEntity
| where CommonSecurityLog_TimeGenerated < ValidUntil
| project
timestamp = CommonSecurityLog_TimeGenerated,
SourceIP, DestinationIP, MessageIP, Message,
DeviceVendor, DeviceProduct, Id, ValidUntil, Confidence,
TI_ipEntity, CS_ipEntity, LogSeverity, DeviceAction, Type
Atividade de viagem suspeita
Procure entradas bem-sucedidas de países ou regiões não vistos anteriormente para um determinado usuário, o que pode sinalizar comprometimento da conta ou atividade de viagem suspeita nos últimos 180 dias.
SigninLogs
| where TimeGenerated >= ago(180d)
| where ResultType == 0
| summarize CountriesAccessed = make_set(Location) by UserPrincipalName
| where array_length(CountriesAccessed) > 3 // Adjust threshold
Linha de base de início de sessão diário
Crie uma linha de base diária de todos os usuários e seus locais de entrada.
SigninLogs
| where ResultType == 0
| where TimeGenerated between (ago(180d)..ago(1d)) // Historical window excluding today
| summarize HistoricalCountries = make_set(Location) by UserPrincipalName
| join kind=inner (
SigninLogs
| where ResultType == 0
| where TimeGenerated between (startofday(ago(0d))..now()) // Today’s sign-ins
| summarize TodayCountries = make_set(Location) by UserPrincipalName
) on UserPrincipalName
| extend NewLocations = set_difference(TodayCountries, HistoricalCountries)
| project UserPrincipalName, HistoricalCountries, TodayCountries, NewLocations
| where array_length(NewLocations) > 0
Tendência diária de localização por utilizador e aplicação
Um trabalho diário para resumir a atividade de entrada por usuário e aplicativo, mostrando a lista e contagem de localizações geográficas distintas e IPs usados nas últimas 24 horas.
SigninLogs
| where TimeGenerated > ago(1d)
| extend locationString= strcat(tostring(LocationDetails["countryOrRegion"]), "/",
tostring(LocationDetails["state"]), "/", tostring(LocationDetails["city"]), ";")
| extend Day = format_datetime(TimeGenerated, "yyyy-MM-dd")
| summarize LocationList = make_set(locationString), LocationCount=dcount(locationString),
DistinctSourceIp = dcount(IPAddress), LogonCount = count() by Day, AppDisplayName, UserPrincipalName
Tendência diária de execução de processos
Um trabalho diário para rastrear eventos de criação de processos (ID de Evento 4688) a partir de , resumindo contagens por nome de SecurityEventsprocesso juntamente com o número de computadores distintos, contas, processos pai e linhas de comando exclusivas observadas nas últimas 24 horas.
// Frequency - Daily - Maintain 30 day or 60 Day History.
SecurityEvent
| where TimeGenerated > ago(1d)
| where EventID==4688
| extend Day = format_datetime(TimeGenerated, "yyyy-MM-dd")
| summarize Count= count(), DistinctComputers = dcount(Computer), DistinctAccounts = dcount(Account),
DistinctParent = dcount(ParentProcessName), NoofCommandLines = dcount(CommandLine) by Day, NewProcessName