Neste guia de iniciação rápida, utiliza Microsoft Foundry para:
- Criar um projeto
- Implementar um modelo
- Executar uma finalização de chat
- Criar e executar um agente
- Carregar arquivos para o agente
Neste guia de iniciação rápida, utiliza Microsoft Foundry para:
- Criar um projeto
- Implementar um modelo
- Prepare-se para codificar - instale os pacotes necessários e autentique-se
- Bate-papo com um modelo
- Criar um agente
- Conversar com um agente
O Microsoft Foundry SDK está disponível em várias linguagens, incluindo Python, Java, TypeScript e C#. Este guia de início rápido fornece instruções para cada um desses idiomas.
Prerequisites
Important
Antes de começar, verifique se o ambiente de desenvolvimento está pronto.
Este Guia de início rápido se concentra em etapas específicas do cenário , como instalação do SDK, autenticação e execução de código de exemplo.
Criar recursos
No portal, você pode explorar um rico catálogo de modelos de ponta de muitos provedores diferentes. Para este tutorial, pesquise e selecione o modelo gpt-4o .
-
Inicie sessão no Microsoft Foundry. Certifica-te de que a opção do New Foundry está desligada. Estes passos referem-se à Foundry (clássica).
Se estiver num projeto, selecione Microsoft Foundry no canto superior esquerdo para sair do projeto. Você criará um novo em um momento.
Na página de destino ou no catálogo de modelos, selecione gpt-4o (ou gpt-4o-mini).
Selecione Usar este modelo. Quando solicitado, insira um novo nome de projeto e selecione Criar.
Revise o nome da implantação e selecione Criar.
Em seguida, selecione Conectar e implantar depois de selecionar um tipo de implantação.
Selecione Abrir no playground na página de implantação após a implantação.
Você pousa no playground de bate-papo com o modelo pré-implantado e pronto para uso.
Se você estiver criando um agente, poderá começar com Criar um agente. Os passos são semelhantes, mas em uma ordem diferente. Depois que o projeto é criado, você chega ao playground do agente em vez do playground do bate-papo.
Vais começar no portal Microsoft Foundry para criar um projeto e implementar um modelo. Este início rápido usa o modelo gpt-4-1-mini, mas pode usar qualquer modelo suportado de vários provedores.
Inicie sessão no
Microsoft Foundry. Certifica-te de que a opção
do New Foundry está desligada. Estes passos referem-se à
Foundry (clássico).
Inicie sessão no
Microsoft Foundry. Certifica-te de que a opção
New Foundry está ativada. Estes passos referem-se a
Foundry (new).
- Os projetos ajudam a organizar o seu trabalho. O projeto em que você está trabalhando aparece no canto superior esquerdo.
- Para criar um novo projeto, selecione o nome do projeto e, em seguida, Criar novo projeto.
- Dê um nome ao seu projeto e selecione Criar projeto.
- Agora implante um modelo no projeto:
- Selecione Descobrir na navegação no canto superior direito.
- Selecione Modelos.
- Procure o modelo gpt-4.1-mini .
- Seleciona as definições de Deploy>Default para adicioná-las ao teu projeto.
A Foundry Models permite aos clientes consumir os modelos mais potentes dos fornecedores de modelos de referência usando um único endpoint e credenciais. Isso significa que você pode alternar entre modelos e consumi-los do seu aplicativo sem alterar uma única linha de código.
Agora você está pronto para passar a interagir com seu modelo e criar um agente.
Prepare-se para codificar
Tip
O código utiliza a API dos projetos Foundry (clássica) e é incompatível com a API dos projetos Foundry (nova) (pré-visualização).
Mude para a documentação (nova) do Foundry para a versão (nova) da API (pré-visualização) dos projetos Foundry.
Instale estes pacotes:
pip install openai azure-identity azure-ai-projects==1.0.0
-
O Microsoft Foundry Models permite aos clientes consumir os modelos mais potentes dos fornecedores de modelos de referência usando um único endpoint e credenciais. Isso significa que você pode alternar entre modelos e consumi-los do seu aplicativo sem alterar uma única linha de código.
Copie o endpoint do projeto Foundry na secção de Visão Geral do seu projeto. Você vai usá-lo em um momento.
Tip
Se não vires o endpoint do projeto Foundry, estás a usar um projeto baseado em hub. (Ver Tipos de projetos). Mude para um projeto do Foundry ou use as etapas anteriores para criar um.
- Selecione Página Inicial na navegação no canto superior direito.
- Selecione Chaves e copie o Endpoint. Você vai usá-lo em um momento.
Certifique-se de entrar usando o comando CLI az login (ou az login --use-device-code) para autenticar antes de executar seus scripts Python.
Acompanhe abaixo ou obtenha o código:
Instalar pacotes:
Para trabalhar com o Foundry Tools no seu projeto .NET, terá de instalar vários pacotes NuGet. Adicione pacotes NuGet usando a CLI .NET no terminal integrado:
# Add Azure AI SDK packages
dotnet add package Azure.Identity
dotnet add package Azure.AI.Projects
dotnet add package Azure.AI.Agents.Persistent
dotnet add package Azure.AI.Inference
-
O Microsoft Foundry Models permite aos clientes consumir os modelos mais potentes dos fornecedores de modelos de referência usando um único endpoint e credenciais. Isso significa que você pode alternar entre modelos e consumi-los do seu aplicativo sem alterar uma única linha de código.
Copie o endpoint do projeto Foundry na secção de Visão Geral do seu projeto. Você vai usá-lo em um momento.
Tip
Se não vires o endpoint do projeto Foundry, estás a usar um projeto baseado em hub. (Ver Tipos de projetos). Mude para um projeto do Foundry ou use as etapas anteriores para criar um.
- Selecione Página Inicial na navegação no canto superior direito.
- Selecione Chaves e copie o Endpoint. Você vai usá-lo em um momento.
Defina essas variáveis de ambiente para usar em seus scripts. O AZURE_AI_ENDPOINT é o ponto de extremidade do projeto que você copiou anteriormente. Remova tudo depois .com/ nesse ponto final para formar AZURE_AI_INFERENCE.
AZURE_AI_ENDPOINT=https://your.services.ai.azure.com/api/projects/project
AZURE_AI_INFERENCE=https://your.services.ai.azure.com/
AZURE_AI_MODEL=your_model_name
Tip
As amostras de agente exigem que a AZURE_AI_MODEL variável de ambiente seja definida para um modelo compatível com OpenAI, por exemplo gpt-4.1, pois nem todos os modelos são suportados para casos de uso do agente, incluindo ferramentas.
Certifique-se de entrar usando o comando CLI az login (ou az login --use-device-code) para autenticar antes de executar seus scripts C#.
Acompanhe abaixo ou obtenha o código:
Certifique-se de entrar usando o comando CLI az login (ou az login --use-device-code) para autenticar antes de executar seus scripts TypeScript.
Baixar package.json.
Instale pacotes com npm install
-
O Microsoft Foundry Models permite aos clientes consumir os modelos mais potentes dos fornecedores de modelos de referência usando um único endpoint e credenciais. Isso significa que você pode alternar entre modelos e consumi-los do seu aplicativo sem alterar uma única linha de código.
Copie o endpoint do projeto Foundry na secção de Visão Geral do seu projeto. Você vai usá-lo em um momento.
Tip
Se não vires o endpoint do projeto Foundry, estás a usar um projeto baseado em hub. (Ver Tipos de projetos). Mude para um projeto do Foundry ou use as etapas anteriores para criar um.
- Selecione Página Inicial na navegação no canto superior direito.
- Selecione Chaves e copie o Endpoint. Você vai usá-lo em um momento.
Defina estas variáveis de ambiente para usar em seus scripts:
MODEL_DEPLOYMENT_NAME=gpt-4o
PROJECT_ENDPOINT=https://<your-foundry-resource-name>.services.ai.azure.com/api/projects/<your-foundry-project-name>
Comece o seu código com estas importações:
import fs from 'fs';
import path from 'path';
import { fileURLToPath } from 'url';
import { DefaultAzureCredential } from '@azure/identity';
import { ToolUtility, DoneEvent, ErrorEvent, ThreadMessage } from '@azure/ai-agents';
import { AIProjectClient } from '@azure/ai-projects';
import { config } from 'dotenv';
config();
Acompanhe abaixo ou obtenha o código:
Important
O código neste artigo usa pacotes que estão atualmente em pré-visualização. Esta pré-visualização é fornecida sem um acordo de nível de serviço, e não a recomendamos para trabalhos em produção. Algumas funcionalidades poderão não ser suportadas ou poderão ter capacidades limitadas. Para obter mais informações, veja Termos Suplementares de Utilização para Pré-visualizações do Microsoft Azure.
-
O Microsoft Foundry Models permite aos clientes consumir os modelos mais potentes dos fornecedores de modelos de referência usando um único endpoint e credenciais. Isso significa que você pode alternar entre modelos e consumi-los do seu aplicativo sem alterar uma única linha de código.
Copie o endpoint do projeto Foundry na secção de Visão Geral do seu projeto. Você vai usá-lo em um momento.
Tip
Se não vires o endpoint do projeto Foundry, estás a usar um projeto baseado em hub. (Ver Tipos de projetos). Mude para um projeto do Foundry ou use as etapas anteriores para criar um.
- Selecione Página Inicial na navegação no canto superior direito.
- Selecione Chaves e copie o Endpoint. Você vai usá-lo em um momento.
Defina estas variáveis de ambiente para usar em seus scripts:
MODEL_DEPLOYMENT_NAME=gpt-4o
PROJECT_ENDPOINT=https://<your-foundry-resource-name>.services.ai.azure.com/api/projects/<your-foundry-project-name>
Certifique-se de fazer login usando o comando CLI az login (ou az login --use-device-code) para autenticar antes de executar seus scripts Java.
Faça o download POM.XML para o seu IDE Java.
Acompanhe abaixo ou obtenha o código:
Certifique-se de entrar usando o comando CLI az login (ou az login --use-device-code) para autenticar antes de executar o próximo comando.
Obtenha um token de acesso temporário. Ele expirará em 60-90 minutos, você precisará atualizar depois disso.
az account get-access-token --scope https://ai.azure.com/.default
Salve os resultados como a variável AZURE_AI_AUTH_TOKENde ambiente .
Acompanhe abaixo ou obtenha o código:
Não é necessária qualquer instalação para utilizar o portal da Foundry.
Important
O código neste artigo usa pacotes que estão atualmente em pré-visualização. Esta pré-visualização é fornecida sem um acordo de nível de serviço, e não a recomendamos para trabalhos em produção. Algumas funcionalidades poderão não ser suportadas ou poderão ter capacidades limitadas. Para obter mais informações, veja Termos Suplementares de Utilização para Pré-visualizações do Microsoft Azure.
Definir variáveis de ambiente
Armazene o ponto de extremidade como uma variável de ambiente. Defina também esses valores para uso em seus scripts.
-
Copie seu endpoint da tela de boas-vindas. Você vai usá-lo na próxima etapa.
Defina estas variáveis de ambiente para usar em seus scripts:
PROJECT_ENDPOINT=<endpoint copied from welcome screen>
AGENT_NAME="MyAgent"
MODEL_DEPLOYMENT_NAME="gpt-4.1-mini"
Instalar e autenticar
Tip
O código utiliza a API nova dos projetos Foundry (pré-visualização) e é incompatível com a versão da API clássica dos projetos Foundry.
Mude para a documentação Foundry (clássica) para a versão da API dos projetos Foundry (clássica).
Instale estes pacotes, incluindo a versão de pré-visualização de azure-ai-projects. Esta versão utiliza a API (nova) dos projetos Foundry (pré-visualização).
pip install azure-ai-projects --pre
pip install openai azure-identity python-dotenv
Certifique-se de entrar usando o comando CLI az login (ou az login --use-device-code) para autenticar antes de executar seus scripts Python.
Acompanhe abaixo ou obtenha o código:
Instalar pacotes:
Adicionar pacotes NuGet usando a CLI .NET no terminal integrado: Estes pacotes usam a API (nova) dos projetos Foundry (pré-visualização).
dotnet add package Azure.AI.Projects --prerelease
dotnet add package Azure.AI.Projects.OpenAI --prerelease
dotnet add package Azure.Identity
Certifique-se de entrar usando o comando CLI az login (ou az login --use-device-code) para autenticar antes de executar seus scripts C#.
Acompanhe abaixo ou obtenha o código:
Instale estes pacotes, incluindo a versão de pré-visualização de @azure/ai-projects. Esta versão utiliza a API (nova) dos projetos Foundry (pré-visualização).:
npm install @azure/ai-projects@beta @azure/identity dotenv
Certifique-se de entrar usando o comando CLI az login (ou az login --use-device-code) para autenticar antes de executar seus scripts TypeScript.
Acompanhe abaixo ou obtenha o código:
- Certifique-se de fazer login usando o comando CLI
az login (ou az login --use-device-code) para autenticar antes de executar seus scripts Java.
Acompanhe abaixo ou obtenha o código:
Certifique-se de entrar usando o comando CLI az login (ou az login --use-device-code) para autenticar antes de executar o próximo comando.
Obtenha um token de acesso temporário. Ele expirará em 60-90 minutos, você precisará atualizar depois disso.
az account get-access-token --scope https://ai.azure.com/.default
Salve os resultados como a variável AZURE_AI_AUTH_TOKENde ambiente .
Acompanhe abaixo ou obtenha o código:
Não é necessária qualquer instalação para utilizar o portal da Foundry.
Bate-papo com um modelo
A conclusão do bate-papo é o bloco de construção básico dos aplicativos de IA. Utilizando as funcionalidades de conclusão de chat, pode enviar uma lista de mensagens e obter uma resposta do modelo.
Tip
O código utiliza a API dos projetos Foundry (clássica) e é incompatível com a API dos projetos Foundry (nova) (pré-visualização).
Mude para a documentação (nova) do Foundry para a versão (nova) da API (pré-visualização) dos projetos Foundry.
Substitua pelo endpoint o seu ponto de extremidade neste código.
from azure.ai.projects import AIProjectClient
from azure.identity import DefaultAzureCredential
project = AIProjectClient(
endpoint="https://your-foundry-resource-name.ai.azure.com/api/projects/project-name",
credential=DefaultAzureCredential(),
)
models = project.get_openai_client(api_version="2024-10-21")
response = models.chat.completions.create(
model="gpt-4o",
messages=[
{"role": "system", "content": "You are a helpful writing assistant"},
{"role": "user", "content": "Write me a poem about flowers"},
],
)
print(response.choices[0].message.content)
using System.ClientModel.Primitives;
using Azure.Identity;
using OpenAI;
using OpenAI.Chat;
#pragma warning disable OPENAI001
string projectEndpoint = System.Environment.GetEnvironmentVariable("AZURE_AI_INFERENCE")!;
string modelDeploymentName = System.Environment.GetEnvironmentVariable("AZURE_AI_MODEL")!;
BearerTokenPolicy tokenPolicy = new(
new DefaultAzureCredential(),
"https://ai.azure.com/.default");
OpenAIClient openAIClient = new(
authenticationPolicy: tokenPolicy,
options: new OpenAIClientOptions()
{
Endpoint = new($"{projectEndpoint}/openai/v1"),
});
ChatClient chatClient = openAIClient.GetChatClient(modelDeploymentName);
ChatCompletion completion = await chatClient.CompleteChatAsync(
[
new SystemChatMessage("You are a helpful assistant."),
new UserChatMessage("How many feet are in a mile?")
]);
Console.WriteLine(completion.Content[0].Text);
// Get the Azure AI endpoint and deployment name from environment variables
const endpoint = process.env.PROJECT_ENDPOINT as string;
const deployment = process.env.MODEL_DEPLOYMENT_NAME || 'gpt-4o';
// Create an Azure OpenAI Client
const project = new AIProjectClient(endpoint, new DefaultAzureCredential());
const client = await project.getAzureOpenAIClient({
// The API version should match the version of the Azure OpenAI resource
apiVersion: "2024-12-01-preview"
});
// Create a chat completion
const chatCompletion = await client.chat.completions.create({
model: deployment,
messages: [
{ role: "system", content: "You are a helpful writing assistant" },
{ role: "user", content: "Write me a poem about flowers" },
],
});
console.log(`\n==================== 🌷 COMPLETIONS POEM ====================\n`);
console.log(chatCompletion.choices[0].message.content);
package com.azure.ai.foundry.samples;
import com.azure.ai.inference.ChatCompletionsClient;
import com.azure.ai.inference.ChatCompletionsClientBuilder;
import com.azure.ai.inference.models.ChatCompletions;
import com.azure.core.credential.AzureKeyCredential;
import com.azure.core.credential.TokenCredential;
import com.azure.core.exception.HttpResponseException;
import com.azure.core.util.logging.ClientLogger;
import com.azure.identity.DefaultAzureCredentialBuilder;
/**
* Sample demonstrating non-streaming chat completion functionality
* using the Azure AI Inference SDK, wired to your AOAI project endpoint.
*
* Environment variables:
* - PROJECT_ENDPOINT: Required. Your Azure AI project endpoint.
* - AZURE_AI_API_KEY: Optional. Your API key (falls back to DefaultAzureCredential).
* - AZURE_MODEL_DEPLOYMENT_NAME: Optional. Model deployment name (default: "phi-4").
* - AZURE_MODEL_API_PATH: Optional. API path segment (default: "deployments").
* - CHAT_PROMPT: Optional. The prompt to send (uses a default if not provided).
*
* SDK Features Demonstrated:
* - Using the Azure AI Inference SDK (com.azure:azure-ai-inference:1.0.0-beta.5)
* - Creating a ChatCompletionsClient with Azure or API key authentication
* - Configuring endpoint paths for different model deployments
* - Using the simplified complete() method for quick completions
* - Accessing response content through strongly-typed objects
* - Implementing proper error handling for service requests
* - Choosing between DefaultAzureCredential and AzureKeyCredential
*
*/
public class ChatCompletionSample {
private static final ClientLogger logger = new ClientLogger(ChatCompletionSample.class);
public static void main(String[] args) {
// 1) Read and validate the project endpoint
String projectEndpoint = System.getenv("PROJECT_ENDPOINT");
if (projectEndpoint == null || projectEndpoint.isBlank()) {
logger.error("PROJECT_ENDPOINT is required but not set");
return;
}
// 2) Optional auth + model settings
String apiKey = System.getenv("AZURE_AI_API_KEY");
String deploymentName = System.getenv("AZURE_MODEL_DEPLOYMENT_NAME");
String apiPath = System.getenv("AZURE_MODEL_API_PATH");
String prompt = System.getenv("CHAT_PROMPT");
if (deploymentName == null || deploymentName.isBlank()) {
deploymentName = "phi-4";
logger.info("No AZURE_MODEL_DEPLOYMENT_NAME provided, using default: {}", deploymentName);
}
if (apiPath == null || apiPath.isBlank()) {
apiPath = "deployments";
logger.info("No AZURE_MODEL_API_PATH provided, using default: {}", apiPath);
}
if (prompt == null || prompt.isBlank()) {
prompt = "What best practices should I follow when asking an AI model to review Java code?";
logger.info("No CHAT_PROMPT provided, using default prompt: {}", prompt);
}
try {
// 3) Build the full inference endpoint URL
String fullEndpoint = projectEndpoint.endsWith("/")
? projectEndpoint
: projectEndpoint + "/";
fullEndpoint += apiPath + "/" + deploymentName;
logger.info("Using inference endpoint: {}", fullEndpoint);
// 4) Create the client with key or token credential :contentReference[oaicite:0]{index=0}
ChatCompletionsClient client;
if (apiKey != null && !apiKey.isBlank()) {
logger.info("Authenticating using API key");
client = new ChatCompletionsClientBuilder()
.credential(new AzureKeyCredential(apiKey))
.endpoint(fullEndpoint)
.buildClient();
} else {
logger.info("Authenticating using DefaultAzureCredential");
TokenCredential credential = new DefaultAzureCredentialBuilder().build();
client = new ChatCompletionsClientBuilder()
.credential(credential)
.endpoint(fullEndpoint)
.buildClient();
}
// 5) Send a simple chat completion request
logger.info("Sending chat completion request with prompt: {}", prompt);
ChatCompletions completions = client.complete(prompt);
// 6) Process the response
String content = completions.getChoice().getMessage().getContent();
logger.info("Received response from model");
System.out.println("\nResponse from AI assistant:\n" + content);
} catch (HttpResponseException e) {
// Handle API errors
int status = e.getResponse().getStatusCode();
logger.error("Service error {}: {}", status, e.getMessage());
if (status == 401 || status == 403) {
logger.error("Authentication failed. Check API key or Azure credentials.");
} else if (status == 404) {
logger.error("Deployment not found. Verify deployment name and endpoint.");
} else if (status == 429) {
logger.error("Rate limit exceeded. Please retry later.");
}
} catch (Exception e) {
// Handle all other exceptions
logger.error("Error in chat completion: {}", e.getMessage(), e);
}
}
}
Substitua YOUR-FOUNDRY-RESOURCE-NAME pelos seus valores:
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/openai/deployments/gpt-4o/chat/completions?api-version=2024-10-21' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json' \
-d '{
"messages": [
{"role": "system",
"content": "You are a helpful writing assistant"},
{"role": "user",
"content": "Write me a poem about flowers"}
],
"model": "gpt-4o"
}'
- Na área de teste do chat, preencha o campo de entrada e selecione Enviar.
- O modelo retorna uma resposta no painel Resposta .
Interagir com um modelo é o bloco de construção básico das aplicações de IA. Envie uma entrada e receba uma resposta do modelo:
Tip
O código utiliza a API nova dos projetos Foundry (pré-visualização) e é incompatível com a versão da API clássica dos projetos Foundry.
Mude para a documentação Foundry (clássica) para a versão da API dos projetos Foundry (clássica).
import os
from dotenv import load_dotenv
from azure.identity import DefaultAzureCredential
from azure.ai.projects import AIProjectClient
load_dotenv()
print(f"Using PROJECT_ENDPOINT: {os.environ['PROJECT_ENDPOINT']}")
print(f"Using MODEL_DEPLOYMENT_NAME: {os.environ['MODEL_DEPLOYMENT_NAME']}")
project_client = AIProjectClient(
endpoint=os.environ["PROJECT_ENDPOINT"],
credential=DefaultAzureCredential(),
)
openai_client = project_client.get_openai_client()
response = openai_client.responses.create(
model=os.environ["MODEL_DEPLOYMENT_NAME"],
input="What is the size of France in square miles?",
)
print(f"Response output: {response.output_text}")
using Azure.AI.Projects;
using Azure.AI.Projects.OpenAI;
using Azure.Identity;
using OpenAI;
using OpenAI.Responses;
#pragma warning disable OPENAI001
string projectEndpoint = Environment.GetEnvironmentVariable("PROJECT_ENDPOINT")
?? throw new InvalidOperationException("Missing environment variable 'PROJECT_ENDPOINT'");
string modelDeploymentName = Environment.GetEnvironmentVariable("MODEL_DEPLOYMENT_NAME")
?? throw new InvalidOperationException("Missing environment variable 'MODEL_DEPLOYMENT_NAME'");
AIProjectClient projectClient = new(new Uri(projectEndpoint ), new AzureCliCredential());
ProjectResponsesClient responseClient = projectClient.OpenAI.GetProjectResponsesClientForModel(modelDeploymentName);
ResponseResult response = await responseClient.CreateResponseAsync("What is the size of France in square miles?");
Console.WriteLine(response.GetOutputText());
import { DefaultAzureCredential } from "@azure/identity";
import { AIProjectClient } from "@azure/ai-projects";
import "dotenv/config";
const projectEndpoint = process.env["PROJECT_ENDPOINT"] || "<project endpoint>";
const deploymentName = process.env["MODEL_DEPLOYMENT_NAME"] || "<model deployment name>";
async function main(): Promise<void> {
const project = new AIProjectClient(projectEndpoint, new DefaultAzureCredential());
const openAIClient = await project.getOpenAIClient();
const response = await openAIClient.responses.create({
model: deploymentName,
input: "What is the size of France in square miles?",
});
console.log(`Response output: ${response.output_text}`);
}
main().catch(console.error);
package com.azure.ai.agents;
import com.azure.core.util.Configuration;
import com.azure.identity.DefaultAzureCredentialBuilder;
import com.openai.models.responses.Response;
import com.openai.models.responses.ResponseCreateParams;
public class CreateResponse {
public static void main(String[] args) {
String endpoint = Configuration.getGlobalConfiguration().get("PROJECT_ENDPOINT");
String model = Configuration.getGlobalConfiguration().get("MODEL_DEPLOYMENT_NAME");
// Code sample for creating a response
ResponsesClient responsesClient = new AgentsClientBuilder()
.credential(new DefaultAzureCredentialBuilder().build())
.endpoint(endpoint)
.serviceVersion(AgentsServiceVersion.V2025_11_15_PREVIEW)
.buildResponsesClient();
ResponseCreateParams responseRequest = new ResponseCreateParams.Builder()
.input("Hello, how can you help me?")
.model(model)
.build();
Response response = responsesClient.getResponseService().create(responseRequest);
System.out.println("Response ID: " + response.id());
System.out.println("Response Model: " + response.model());
System.out.println("Response Created At: " + response.createdAt());
System.out.println("Response Output: " + response.output());
}
}
Substitua YOUR-FOUNDRY-RESOURCE-NAME pelos seus valores:
curl -X POST https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/openai/responses?api-version=2025-11-15-preview \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $AZURE_AI_AUTH_TOKEN" \
-d '{
"model": "gpt-4.1-mini",
"input": "What is the size of France in square miles?"
}'
Depois que o modelo for implantado, você será automaticamente movido de Início para a seção Compilação . O seu novo modelo está selecionado e pronto para experimentar.
Comece a conversar com seu modelo, por exemplo: "Escreva-me um poema sobre flores".
Criar um agente
Crie um agente usando seu modelo implantado.
Um agente define o comportamento principal. Uma vez criado, ele garante respostas consistentes nas interações do usuário sem repetir instruções a cada vez. Você pode atualizar ou excluir agentes a qualquer momento.
Tip
O código utiliza a API nova dos projetos Foundry (pré-visualização) e é incompatível com a versão da API clássica dos projetos Foundry.
Mude para a documentação Foundry (clássica) para a versão da API dos projetos Foundry (clássica).
import os
from dotenv import load_dotenv
from azure.identity import DefaultAzureCredential
from azure.ai.projects import AIProjectClient
from azure.ai.projects.models import PromptAgentDefinition
load_dotenv()
project_client = AIProjectClient(
endpoint=os.environ["PROJECT_ENDPOINT"],
credential=DefaultAzureCredential(),
)
agent = project_client.agents.create_version(
agent_name=os.environ["AGENT_NAME"],
definition=PromptAgentDefinition(
model=os.environ["MODEL_DEPLOYMENT_NAME"],
instructions="You are a helpful assistant that answers general questions",
),
)
print(f"Agent created (id: {agent.id}, name: {agent.name}, version: {agent.version})")
using Azure.AI.Projects;
using Azure.AI.Projects.OpenAI;
using Azure.Identity;
string projectEndpoint = Environment.GetEnvironmentVariable("PROJECT_ENDPOINT")
?? throw new InvalidOperationException("Missing environment variable 'PROJECT_ENDPOINT'");
string modelDeploymentName = Environment.GetEnvironmentVariable("MODEL_DEPLOYMENT_NAME")
?? throw new InvalidOperationException("Missing environment variable 'MODEL_DEPLOYMENT_NAME'");
string agentName = Environment.GetEnvironmentVariable("AGENT_NAME")
?? throw new InvalidOperationException("Missing environment variable 'AGENT_NAME'");
AIProjectClient projectClient = new(new Uri(projectEndpoint), new AzureCliCredential());
AgentDefinition agentDefinition = new PromptAgentDefinition(modelDeploymentName)
{
Instructions = "You are a helpful assistant that answers general questions",
};
AgentVersion newAgentVersion = projectClient.Agents.CreateAgentVersion(
agentName,
options: new(agentDefinition));
List<AgentVersion> agentVersions = projectClient.Agents.GetAgentVersions(agentName);
foreach (AgentVersion agentVersion in agentVersions)
{
Console.WriteLine($"Agent: {agentVersion.Id}, Name: {agentVersion.Name}, Version: {agentVersion.Version}");
}
import { DefaultAzureCredential } from "@azure/identity";
import { AIProjectClient } from "@azure/ai-projects";
import "dotenv/config";
const projectEndpoint = process.env["PROJECT_ENDPOINT"] || "<project endpoint>";
const deploymentName = process.env["MODEL_DEPLOYMENT_NAME"] || "<model deployment name>";
async function main(): Promise<void> {
const project = new AIProjectClient(projectEndpoint, new DefaultAzureCredential());
const agent = await project.agents.createVersion("my-agent-basic", {
kind: "prompt",
model: deploymentName,
instructions: "You are a helpful assistant that answers general questions",
});
console.log(`Agent created (id: ${agent.id}, name: ${agent.name}, version: ${agent.version})`);
}
main().catch(console.error);
package com.azure.ai.agents;
import com.azure.ai.agents.models.AgentVersionDetails;
import com.azure.ai.agents.models.PromptAgentDefinition;
import com.azure.core.util.Configuration;
import com.azure.identity.DefaultAzureCredentialBuilder;
public class CreateAgent {
public static void main(String[] args) {
String endpoint = Configuration.getGlobalConfiguration().get("PROJECT_ENDPOINT");
String model = Configuration.getGlobalConfiguration().get("MODEL_DEPLOYMENT_NAME");
// Code sample for creating an agent
AgentsClient agentsClient = new AgentsClientBuilder()
.credential(new DefaultAzureCredentialBuilder().build())
.endpoint(endpoint)
.buildAgentsClient();
PromptAgentDefinition request = new PromptAgentDefinition(model);
AgentVersionDetails agent = agentsClient.createAgentVersion("MyAgent", request);
System.out.println("Agent ID: " + agent.getId());
System.out.println("Agent Name: " + agent.getName());
System.out.println("Agent Version: " + agent.getVersion());
}
}
Substitua YOUR-FOUNDRY-RESOURCE-NAME pelos seus valores:
curl -X POST https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/agents?api-version=2025-11-15-preview \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $AZURE_AI_AUTH_TOKEN" \
-d '{
"name": "MyAgent",
"definition": {
"kind": "prompt",
"model": "gpt-4.1-mini",
"instructions": "You are a helpful assistant that answers general questions"
}
}'
Agora crie um agente e interaja com ele.
- Ainda na seção Compilar , selecione Agentes no painel esquerdo.
- Selecione Criar agente e atribua-lhe um nome.
Conversar com um agente
Crie um agente e converse com ele.
Tip
O código utiliza a API dos projetos Foundry (clássica) e é incompatível com a API dos projetos Foundry (nova) (pré-visualização).
Mude para a documentação (nova) do Foundry para a versão (nova) da API (pré-visualização) dos projetos Foundry.
Substitua pelo endpoint o seu ponto de extremidade neste código.
from azure.ai.projects import AIProjectClient
from azure.identity import DefaultAzureCredential
from azure.ai.agents.models import ListSortOrder, FilePurpose
project = AIProjectClient(
endpoint="https://your-foundry-resource-name.ai.azure.com/api/projects/project-name",
credential=DefaultAzureCredential(),
)
agent = project.agents.create_agent(
model="gpt-4o",
name="my-agent",
instructions="You are a helpful writing assistant")
thread = project.agents.threads.create()
message = project.agents.messages.create(
thread_id=thread.id,
role="user",
content="Write me a poem about flowers")
run = project.agents.runs.create_and_process(thread_id=thread.id, agent_id=agent.id)
if run.status == "failed":
# Check if you got "Rate limit is exceeded.", then you want to get more quota
print(f"Run failed: {run.last_error}")
# Get messages from the thread
messages = project.agents.messages.list(thread_id=thread.id)
# Get the last message from the sender
messages = project.agents.messages.list(thread_id=thread.id, order=ListSortOrder.ASCENDING)
for message in messages:
if message.run_id == run.id and message.text_messages:
print(f"{message.role}: {message.text_messages[-1].text.value}")
# Delete the agent once done
project.agents.delete_agent(agent.id)
print("Deleted agent")
using Azure;
using Azure.Identity;
using Azure.AI.Agents.Persistent;
// Creating the Client for agents
var projectEndpoint = System.Environment.GetEnvironmentVariable("AZURE_AI_ENDPOINT");
var modelDeploymentName = System.Environment.GetEnvironmentVariable("AZURE_AI_MODEL");
PersistentAgentsClient client = new(projectEndpoint, new DefaultAzureCredential());
// Create an Agent with toolResources and process Agent run
PersistentAgent agent = client.Administration.CreateAgent(
model: modelDeploymentName,
name: "SDK Test Agent - Tutor",
instructions: "You are a personal electronics tutor. Write and run code to answer questions.",
tools: new List<ToolDefinition> { new CodeInterpreterToolDefinition() });
// Create thread for communication
PersistentAgentThread thread = client.Threads.CreateThread();
// Create message to thread
PersistentThreadMessage messageResponse = client.Messages.CreateMessage(
thread.Id,
MessageRole.User,
"I need to solve the equation `3x + 11 = 14`. Can you help me?");
// Run the Agent
ThreadRun run = client.Runs.CreateRun(thread, agent);
// Wait for the run to complete
do
{
Thread.Sleep(TimeSpan.FromMilliseconds(500));
run = client.Runs.GetRun(thread.Id, run.Id);
}
while (run.Status == RunStatus.Queued
|| run.Status == RunStatus.InProgress);
Pageable<PersistentThreadMessage> messages = client.Messages.GetMessages(
threadId: thread.Id,
order: ListSortOrder.Ascending
);
// Print the messages in the thread
WriteMessages(messages);
// Delete the thread and agent after use
client.Threads.DeleteThread(thread.Id);
client.Administration.DeleteAgent(agent.Id);
// Temporary function to use a list of messages in the thread and write them to the console.
static void WriteMessages(IEnumerable<PersistentThreadMessage> messages)
{
foreach (PersistentThreadMessage threadMessage in messages)
{
Console.Write($"{threadMessage.CreatedAt:yyyy-MM-dd HH:mm:ss} - {threadMessage.Role,10}: ");
foreach (MessageContent contentItem in threadMessage.ContentItems)
{
if (contentItem is MessageTextContent textItem)
{
Console.Write(textItem.Text);
}
else if (contentItem is MessageImageFileContent imageFileItem)
{
Console.Write($"<image from ID: {imageFileItem.FileId}");
}
Console.WriteLine();
}
}
}
const endpoint = process.env.PROJECT_ENDPOINT as string;
const deployment = process.env.MODEL_DEPLOYMENT_NAME || 'gpt-4o';
const client = new AIProjectClient(endpoint, new DefaultAzureCredential());
// Create an Agent
const agent = await client.agents.createAgent(deployment, {
name: 'my-agent',
instructions: 'You are a helpful agent'
});
console.log(`\n==================== 🕵️ POEM AGENT ====================`);
// Create a thread and message
const thread = await client.agents.threads.create();
const prompt = 'Write me a poem about flowers';
console.log(`\n---------------- 📝 User Prompt ---------------- \n${prompt}`);
await client.agents.messages.create(thread.id, 'user', prompt);
// Create run
let run = await client.agents.runs.create(thread.id, agent.id);
// Wait for run to complete
console.log(`\n---------------- 🚦 Run Status ----------------`);
while (['queued', 'in_progress', 'requires_action'].includes(run.status)) {
// Avoid adding a lot of messages to the console
await new Promise((resolve) => setTimeout(resolve, 1000));
run = await client.agents.runs.get(thread.id, run.id);
console.log(`Run status: ${run.status}`);
}
console.log('\n---------------- 📊 Token Usage ----------------');
console.table([run.usage]);
const messagesIterator = await client.agents.messages.list(thread.id);
const assistantMessage = await getAssistantMessage(messagesIterator);
console.log('\n---------------- 💬 Response ----------------');
printAssistantMessage(assistantMessage);
// Clean up
console.log(`\n---------------- 🧹 Clean Up Poem Agent ----------------`);
await client.agents.deleteAgent(agent.id);
console.log(`Deleted Agent, Agent ID: ${agent.id}`);
package com.azure.ai.foundry.samples;
import com.azure.ai.agents.persistent.PersistentAgentsClient;
import com.azure.ai.agents.persistent.PersistentAgentsClientBuilder;
import com.azure.ai.agents.persistent.PersistentAgentsAdministrationClient;
import com.azure.ai.agents.persistent.models.CreateAgentOptions;
import com.azure.ai.agents.persistent.models.CreateThreadAndRunOptions;
import com.azure.ai.agents.persistent.models.PersistentAgent;
import com.azure.ai.agents.persistent.models.ThreadRun;
import com.azure.core.credential.TokenCredential;
import com.azure.core.exception.HttpResponseException;
import com.azure.core.util.logging.ClientLogger;
import com.azure.identity.DefaultAzureCredentialBuilder;
/**
* Sample demonstrating how to work with Azure AI Agents using the Azure AI Agents Persistent SDK.
*
* This sample shows how to:
* - Set up authentication with Azure credentials
* - Create a persistent agent with custom instructions
* - Start a thread and run with the agent
* - Access various properties of the agent and thread run
* - Work with the PersistentAgentsClient and PersistentAgentsAdministrationClient
*
* Environment variables:
* - AZURE_ENDPOINT: Optional fallback. The base endpoint for your Azure AI service if PROJECT_ENDPOINT is not provided.
* - PROJECT_ENDPOINT: Required. The endpoint for your Azure AI Project.
* - MODEL_DEPLOYMENT_NAME: Optional. The model deployment name (defaults to "gpt-4o").
* - AGENT_NAME: Optional. The name to give to the created agent (defaults to "java-quickstart-agent").
* - AGENT_INSTRUCTIONS: Optional. The instructions for the agent (defaults to a helpful assistant).
*
* Note: This sample requires proper Azure authentication. It uses DefaultAzureCredential which supports
* multiple authentication methods including environment variables, managed identities, and interactive login.
*
* SDK Features Demonstrated:
* - Using the Azure AI Agents Persistent SDK (com.azure:azure-ai-agents-persistent:1.0.0-beta.2)
* - Creating an authenticated client with DefaultAzureCredential
* - Using the PersistentAgentsClientBuilder pattern for client instantiation
* - Working with the PersistentAgentsAdministrationClient for agent management
* - Creating agents with specific configurations (name, model, instructions)
* - Starting threads and runs for agent conversations
* - Working with agent state and thread management
* - Accessing agent and thread run properties
* - Implementing proper error handling for Azure service interactions
*/
public class AgentSample {
private static final ClientLogger logger = new ClientLogger(AgentSample.class);
public static void main(String[] args) {
// Load environment variables with better error handling, supporting both .env and system environment variables
String endpoint = System.getenv("AZURE_ENDPOINT");
String projectEndpoint = System.getenv("PROJECT_ENDPOINT");
String modelName = System.getenv("MODEL_DEPLOYMENT_NAME");
String agentName = System.getenv("AGENT_NAME");
String instructions = System.getenv("AGENT_INSTRUCTIONS");
// Check for required endpoint configuration
if (projectEndpoint == null && endpoint == null) {
String errorMessage = "Environment variables not configured. Required: either PROJECT_ENDPOINT or AZURE_ENDPOINT must be set.";
logger.error("ERROR: {}", errorMessage);
logger.error("Please set your environment variables or create a .env file. See README.md for details.");
return;
}
// Use AZURE_ENDPOINT as fallback if PROJECT_ENDPOINT not set
if (projectEndpoint == null) {
projectEndpoint = endpoint;
logger.info("Using AZURE_ENDPOINT as PROJECT_ENDPOINT: {}", projectEndpoint);
}
// Set defaults for optional parameters with informative logging
if (modelName == null) {
modelName = "gpt-4o";
logger.info("No MODEL_DEPLOYMENT_NAME provided, using default: {}", modelName);
}
if (agentName == null) {
agentName = "java-quickstart-agent";
logger.info("No AGENT_NAME provided, using default: {}", agentName);
}
if (instructions == null) {
instructions = "You are a helpful assistant that provides clear and concise information.";
logger.info("No AGENT_INSTRUCTIONS provided, using default instructions");
}
// Create Azure credential with DefaultAzureCredentialBuilder
// This supports multiple authentication methods including environment variables,
// managed identities, and interactive browser login
logger.info("Building DefaultAzureCredential");
TokenCredential credential = new DefaultAzureCredentialBuilder().build();
try {
// Build the general agents client
logger.info("Creating PersistentAgentsClient with endpoint: {}", projectEndpoint);
PersistentAgentsClient agentsClient = new PersistentAgentsClientBuilder()
.endpoint(projectEndpoint)
.credential(credential)
.buildClient();
// Derive the administration client
logger.info("Getting PersistentAgentsAdministrationClient");
PersistentAgentsAdministrationClient adminClient =
agentsClient.getPersistentAgentsAdministrationClient();
// Create an agent
logger.info("Creating agent with name: {}, model: {}", agentName, modelName);
PersistentAgent agent = adminClient.createAgent(
new CreateAgentOptions(modelName)
.setName(agentName)
.setInstructions(instructions)
);
logger.info("Agent created: ID={}, Name={}", agent.getId(), agent.getName());
logger.info("Agent model: {}", agent.getModel());
// Start a thread/run on the general client
logger.info("Creating thread and run with agent ID: {}", agent.getId());
ThreadRun runResult = agentsClient.createThreadAndRun(
new CreateThreadAndRunOptions(agent.getId())
);
logger.info("ThreadRun created: ThreadId={}", runResult.getThreadId());
// List available getters on ThreadRun for informational purposes
logger.info("\nAvailable getters on ThreadRun:");
for (var method : ThreadRun.class.getMethods()) {
if (method.getName().startsWith("get")) {
logger.info(" - {}", method.getName());
}
}
logger.info("\nDemo completed successfully!");
} catch (HttpResponseException e) {
// Handle service-specific errors with detailed information
int statusCode = e.getResponse().getStatusCode();
logger.error("Service error {}: {}", statusCode, e.getMessage());
logger.error("Refer to the Azure AI Agents documentation for troubleshooting information.");
} catch (Exception e) {
// Handle general exceptions
logger.error("Error in agent sample: {}", e.getMessage(), e);
}
}
}
Substitua YOUR-FOUNDRY-RESOURCE-NAME e YOUR-PROJECT-NAME pelos seus valores:
# Create agent
curl --request POST --url "https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/assistants?api-version=v1" \
-h "authorization: Bearer $AZURE_AI_AUTH_TOKEN" \
-h "content-type: application/json" \
-d '{
"model": "gpt-4o",
"name": "my-agent",
"instructions": "You are a helpful writing assistant"
}'
#Lets say agent ID created is asst_123456789. Use this to run the agent
# Create thread
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/threads?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json'
#Lets say thread ID created is thread_123456789. Use this in the next step
# Create message using thread ID
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/threads/thread_123456789/messages?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json' \
-d '{
"role": "user",
"content": "Write me a poem about flowers"
}'
# Run thread with the agent - use both agent id and thread id
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/threads/thread_123456789/runs?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json' \
--data '{
"assistant_id": "asst_123456789"
}'
# List the messages in the thread using thread ID
curl --request GET --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/threads/thread_123456789/messages?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json'
# Delete agent once done using agent id
curl --request DELETE --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/assistants/asst_123456789?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json'
Quando você estiver pronto para experimentar um agente, um agente padrão será criado para você. Para conversar com este agente:
- No painel esquerdo, selecione Playgrounds.
- No cartão Agents playground , selecione Let's go.
- Adicione instruções, como "Você é um assistente de escrita útil."
- Comece a conversar com seu agente, por exemplo: "Escreva-me um poema sobre flores".
Utilize o agente previamente criado chamado "MyAgent" para interagir, fazendo uma pergunta e seguindo com uma questão relacionada. A conversa mantém o histórico destas interações.
Tip
O código utiliza a API nova dos projetos Foundry (pré-visualização) e é incompatível com a versão da API clássica dos projetos Foundry.
Mude para a documentação Foundry (clássica) para a versão da API dos projetos Foundry (clássica).
import os
from dotenv import load_dotenv
from azure.identity import DefaultAzureCredential
from azure.ai.projects import AIProjectClient
load_dotenv()
project_client = AIProjectClient(
endpoint=os.environ["PROJECT_ENDPOINT"],
credential=DefaultAzureCredential(),
)
agent_name = os.environ["AGENT_NAME"]
openai_client = project_client.get_openai_client()
# Optional Step: Create a conversation to use with the agent
conversation = openai_client.conversations.create()
print(f"Created conversation (id: {conversation.id})")
# Chat with the agent to answer questions
response = openai_client.responses.create(
conversation=conversation.id, #Optional conversation context for multi-turn
extra_body={"agent": {"name": agent_name, "type": "agent_reference"}},
input="What is the size of France in square miles?",
)
print(f"Response output: {response.output_text}")
# Optional Step: Ask a follow-up question in the same conversation
response = openai_client.responses.create(
conversation=conversation.id,
extra_body={"agent": {"name": agent_name, "type": "agent_reference"}},
input="And what is the capital city?",
)
print(f"Response output: {response.output_text}")
using Azure.AI.Projects;
using Azure.AI.Projects.OpenAI;
using Azure.Identity;
using OpenAI.Responses;
#pragma warning disable OPENAI001
string projectEndpoint = Environment.GetEnvironmentVariable("PROJECT_ENDPOINT")
?? throw new InvalidOperationException("Missing environment variable 'PROJECT_ENDPOINT'");
string modelDeploymentName = Environment.GetEnvironmentVariable("MODEL_DEPLOYMENT_NAME")
?? throw new InvalidOperationException("Missing environment variable 'MODEL_DEPLOYMENT_NAME'");
string agentName = Environment.GetEnvironmentVariable("AGENT_NAME")
?? throw new InvalidOperationException("Missing environment variable 'AGENT_NAME'");
AIProjectClient projectClient = new(new Uri(projectEndpoint), new AzureCliCredential());
// Optional Step: Create a conversation to use with the agent
ProjectConversation conversation = projectClient.OpenAI.Conversations.CreateProjectConversation();
ProjectResponsesClient responsesClient = projectClient.OpenAI.GetProjectResponsesClientForAgent(
defaultAgent: agentName,
defaultConversationId: conversation.Id);
// Chat with the agent to answer questions
ResponseResult response = responsesClient.CreateResponse("What is the size of France in square miles?");
Console.WriteLine(response.GetOutputText());
// Optional Step: Ask a follow-up question in the same conversation
response = responsesClient.CreateResponse("And what is the capital city?");
Console.WriteLine(response.GetOutputText());
import { DefaultAzureCredential } from "@azure/identity";
import { AIProjectClient } from "@azure/ai-projects";
import "dotenv/config";
const projectEndpoint = process.env["PROJECT_ENDPOINT"] || "<project endpoint>";
const deploymentName = process.env["MODEL_DEPLOYMENT_NAME"] || "<model deployment name>";
async function main(): Promise<void> {
const project = new AIProjectClient(projectEndpoint, new DefaultAzureCredential());
const openAIClient = await project.getOpenAIClient();
const response = await openAIClient.responses.create({
model: deploymentName,
input: "What is the size of France in square miles?",
});
const response2 = await openAIClient.responses.create({
model: deploymentName,
input: "And what is the capital city?",
previous_response_id: response.id,
});
console.log(`Response output: ${response2.output_text}`);
};
main().catch(console.error);
package com.azure.ai.agents;
import com.azure.ai.agents.models.AgentReference;
import com.azure.ai.agents.models.AgentVersionDetails;
import com.azure.ai.agents.models.PromptAgentDefinition;
import com.azure.identity.AuthenticationUtil;
import com.azure.identity.DefaultAzureCredentialBuilder;
import com.openai.azure.AzureOpenAIServiceVersion;
import com.openai.azure.AzureUrlPathMode;
import com.openai.client.OpenAIClient;
import com.openai.client.okhttp.OpenAIOkHttpClient;
import com.openai.credential.BearerTokenCredential;
import com.openai.models.conversations.Conversation;
import com.openai.models.conversations.items.ItemCreateParams;
import com.openai.models.responses.EasyInputMessage;
import com.openai.models.responses.Response;
import com.openai.models.responses.ResponseCreateParams;
public class ChatWithAgent {
public static void main(String[] args) {
String endpoint = Configuration.getGlobalConfiguration().get("AZURE_AGENTS_ENDPOINT");
String agentName = "MyAgent";
AgentsClient agentsClient = new AgentsClientBuilder()
.credential(new DefaultAzureCredentialBuilder().build())
.endpoint(endpoint)
.buildAgentsClient();
AgentDetails agent = agentsClient.getAgent(agentName);
Conversation conversation = conversationsClient.getConversationService().create();
conversationsClient.getConversationService().items().create(
ItemCreateParams.builder()
.conversationId(conversation.id())
.addItem(EasyInputMessage.builder()
.role(EasyInputMessage.Role.SYSTEM)
.content("You are a helpful assistant that speaks like a pirate.")
.build()
).addItem(EasyInputMessage.builder()
.role(EasyInputMessage.Role.USER)
.content("Hello, agent!")
.build()
).build()
);
AgentReference agentReference = new AgentReference(agent.getName()).setVersion(agent.getVersion());
Response response = responsesClient.createWithAgentConversation(agentReference, conversation.id());
OpenAIClient client = OpenAIOkHttpClient.builder()
.baseUrl(endpoint.endsWith("/") ? endpoint + "openai" : endpoint + "/openai")
.azureUrlPathMode(AzureUrlPathMode.UNIFIED)
.credential(BearerTokenCredential.create(AuthenticationUtil.getBearerTokenSupplier(
new DefaultAzureCredentialBuilder().build(), "https://ai.azure.com/.default")))
.azureServiceVersion(AzureOpenAIServiceVersion.fromString("2025-11-15-preview"))
.build();
ResponseCreateParams responseRequest = new ResponseCreateParams.Builder()
.input("Hello, how can you help me?")
.model(model)
.build();
Response result = client.responses().create(responseRequest);
}
}
Substitua YOUR-FOUNDRY-RESOURCE-NAME pelos seus valores:
# Optional Step: Create a conversation to use with the agent
curl -X POST https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/openai/conversations?api-version=2025-11-15-preview \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $AZURE_AI_AUTH_TOKEN" \
-d '{}'
# Lets say Conversation ID created is conv_123456789. Use this in the next step
#Chat with the agent to answer questions
curl -X POST https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/openai/responses?api-version=2025-11-15-preview \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $AZURE_AI_AUTH_TOKEN" \
-d '{
"agent": {"type": "agent_reference", "name": "MyAgent"},
"conversation" : "<YOUR_CONVERSATION_ID>",
"input" : "What is the size of France in square miles?"
}'
#Optional Step: Ask a follow-up question in the same conversation
curl -X POST https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/openai/responses?api-version=2025-11-15-preview \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $AZURE_AI_AUTH_TOKEN" \
-d '{
"agent": {"type": "agent_reference", "name": "MyAgent"},
"conversation" : "<YOUR_CONVERSATION_ID>",
"input" : "And what is the capital city?"
}'
Interaja com seu agente.
- Adicione instruções, como "Você é um assistente de escrita útil."
- Comece a conversar com seu agente, por exemplo, "Escreva um poema sobre o sol".
- Acompanhe com "Que tal um haiku?"
Adicionar arquivos ao agente
Os agentes têm capacidades poderosas através do uso de ferramentas. Vamos adicionar uma ferramenta de pesquisa de arquivos que nos permite fazer a recuperação de conhecimento.
Tip
O código utiliza a API dos projetos Foundry (clássica) e é incompatível com a API dos projetos Foundry (nova) (pré-visualização).
Mude para a documentação (nova) do Foundry para a versão (nova) da API (pré-visualização) dos projetos Foundry.
Substitua pelo endpoint o seu ponto de extremidade neste código.
from azure.ai.projects import AIProjectClient
from azure.identity import DefaultAzureCredential
from azure.ai.agents.models import ListSortOrder, FileSearchTool
project = AIProjectClient(
endpoint="https://your-foundry-resource-name.ai.azure.com/api/projects/project-name",
credential=DefaultAzureCredential(),
)
# Upload file and create vector store
file = project.agents.files.upload(file_path="./product_info_1.md", purpose=FilePurpose.AGENTS)
vector_store = project.agents.vector_stores.create_and_poll(file_ids=[file.id], name="my_vectorstore")
# Create file search tool and agent
file_search = FileSearchTool(vector_store_ids=[vector_store.id])
agent = project.agents.create_agent(
model="gpt-4o",
name="my-assistant",
instructions="You are a helpful assistant and can search information from uploaded files",
tools=file_search.definitions,
tool_resources=file_search.resources,
)
# Create thread and process user message
thread = project.agents.threads.create()
project.agents.messages.create(thread_id=thread.id, role="user", content="Hello, what Contoso products do you know?")
run = project.agents.runs.create_and_process(thread_id=thread.id, agent_id=agent.id)
# Handle run status
if run.status == "failed":
print(f"Run failed: {run.last_error}")
# Print thread messages
messages = project.agents.messages.list(thread_id=thread.id, order=ListSortOrder.ASCENDING)
for message in messages:
if message.run_id == run.id and message.text_messages:
print(f"{message.role}: {message.text_messages[-1].text.value}")
# Cleanup resources
project.agents.vector_stores.delete(vector_store.id)
project.agents.files.delete(file_id=file.id)
project.agents.delete_agent(agent.id)
using Azure;
using Azure.Identity;
using Azure.AI.Agents.Persistent;
// Creating the Client for agents and vector stores
var projectEndpoint = System.Environment.GetEnvironmentVariable("AZURE_AI_ENDPOINT");
var modelDeploymentName = System.Environment.GetEnvironmentVariable("AZURE_AI_MODEL");
PersistentAgentsClient client = new(projectEndpoint, new DefaultAzureCredential());
PersistentAgentFileInfo uploadedAgentFile = client.Files.UploadFile(
filePath: "product_info_1.md",
purpose: PersistentAgentFilePurpose.Agents);
// Create a vector store with the file and wait for it to be processed.
// If you do not specify a vector store, create_message will create a vector store with a default expiration policy of seven days after they were last active
Dictionary<string, string> fileIds = new()
{
{ uploadedAgentFile.Id, uploadedAgentFile.Filename }
};
PersistentAgentsVectorStore vectorStore = client.VectorStores.CreateVectorStore(
name: "my_vector_store");
// Add file ID to vector store.
VectorStoreFile vctFile = client.VectorStores.CreateVectorStoreFile(
vectorStoreId: vectorStore.Id,
fileId: uploadedAgentFile.Id
);
Console.WriteLine($"Added file to vector store. The id file in the vector store is {vctFile.Id}.");
FileSearchToolResource fileSearchToolResource = new FileSearchToolResource();
fileSearchToolResource.VectorStoreIds.Add(vectorStore.Id);
// Create an Agent with toolResources and process Agent run
PersistentAgent agent = client.Administration.CreateAgent(
model: modelDeploymentName,
name: "SDK Test Agent - Retrieval",
instructions: "You are a helpful agent that can help fetch data from files you know about.",
tools: new List<ToolDefinition> { new FileSearchToolDefinition() },
toolResources: new ToolResources() { FileSearch = fileSearchToolResource });
// Create thread for communication
PersistentAgentThread thread = client.Threads.CreateThread();
// Create message to thread
PersistentThreadMessage messageResponse = client.Messages.CreateMessage(
thread.Id,
MessageRole.User,
"Can you give me information on how to mount the product?");
// Run the Agent
ThreadRun run = client.Runs.CreateRun(thread, agent);
// Wait for the run to complete
// This is a blocking call, so it will wait until the run is completed
do
{
Thread.Sleep(TimeSpan.FromMilliseconds(500));
run = client.Runs.GetRun(thread.Id, run.Id);
}
while (run.Status == RunStatus.Queued
|| run.Status == RunStatus.InProgress);
// Create a list of messages in the thread and write them to the console.
Pageable<PersistentThreadMessage> messages = client.Messages.GetMessages(
threadId: thread.Id,
order: ListSortOrder.Ascending
);
WriteMessages(messages, fileIds);
// Delete the thread and agent after use
client.VectorStores.DeleteVectorStore(vectorStore.Id);
client.Files.DeleteFile(uploadedAgentFile.Id);
client.Threads.DeleteThread(thread.Id);
client.Administration.DeleteAgent(agent.Id);
// Helper method to write messages to the console
static void WriteMessages(IEnumerable<PersistentThreadMessage> messages, Dictionary<string, string> fileIds)
{
foreach (PersistentThreadMessage threadMessage in messages)
{
Console.Write($"{threadMessage.CreatedAt:yyyy-MM-dd HH:mm:ss} - {threadMessage.Role,10}: ");
foreach (MessageContent contentItem in threadMessage.ContentItems)
{
if (contentItem is MessageTextContent textItem)
{
if (threadMessage.Role == MessageRole.Agent && textItem.Annotations.Count > 0)
{
string strMessage = textItem.Text;
foreach (MessageTextAnnotation annotation in textItem.Annotations)
{
if (annotation is MessageTextFilePathAnnotation pathAnnotation)
{
strMessage = replaceReferences(fileIds, pathAnnotation.FileId, pathAnnotation.Text, strMessage);
}
else if (annotation is MessageTextFileCitationAnnotation citationAnnotation)
{
strMessage = replaceReferences(fileIds, citationAnnotation.FileId, citationAnnotation.Text, strMessage);
}
}
Console.Write(strMessage);
}
else
{
Console.Write(textItem.Text);
}
}
else if (contentItem is MessageImageFileContent imageFileItem)
{
Console.Write($"<image from ID: {imageFileItem.FileId}");
}
Console.WriteLine();
}
}
}
// Helper method to replace file references in the text
static string replaceReferences(Dictionary<string, string> fileIds, string fileID, string placeholder, string text)
{
if (fileIds.TryGetValue(fileID, out string replacement))
return text.Replace(placeholder, $" [{replacement}]");
else
return text.Replace(placeholder, $" [{fileID}]");
}
// Upload a file named product_info_1.md
console.log(`\n==================== 🕵️ FILE AGENT ====================`);
const __dirname = path.dirname(fileURLToPath(import.meta.url));
const filePath = path.join(__dirname, '../data/product_info_1.md');
const fileStream = fs.createReadStream(filePath);
fileStream.on('data', (chunk: string | Buffer) => {
console.log(`Read ${chunk.length} bytes of data.`);
});
const file = await client.agents.files.upload(fileStream, 'assistants', {
fileName: 'product_info_1.md'
});
console.log(`Uploaded file, ID: ${file.id}`);
const vectorStore = await client.agents.vectorStores.create({
fileIds: [file.id], // Associate the uploaded file with the vector store
name: 'my_vectorstore'
});
console.log('\n---------------- 🗃️ Vector Store Info ----------------');
console.table([
{
'Vector Store ID': vectorStore.id,
'Usage (bytes)': vectorStore.usageBytes,
'File Count': vectorStore.fileCounts?.total ?? 'N/A'
}
]);
// Create an Agent and a FileSearch tool
const fileSearchTool = ToolUtility.createFileSearchTool([vectorStore.id]);
const fileAgent = await client.agents.createAgent(deployment, {
name: 'my-file-agent',
instructions: 'You are a helpful assistant and can search information from uploaded files',
tools: [fileSearchTool.definition],
toolResources: fileSearchTool.resources
});
// Create a thread and message
const fileSearchThread = await client.agents.threads.create({ toolResources: fileSearchTool.resources });
const filePrompt = 'What are the steps to setup the TrailMaster X4 Tent?';
console.log(`\n---------------- 📝 User Prompt ---------------- \n${filePrompt}`);
await client.agents.messages.create(fileSearchThread.id, 'user', filePrompt);
// Create run
let fileSearchRun = await client.agents.runs.create(fileSearchThread.id, fileAgent.id).stream();
for await (const eventMessage of fileSearchRun) {
if (eventMessage.event === DoneEvent.Done) {
console.log(`Run completed: ${eventMessage.data}`);
}
if (eventMessage.event === ErrorEvent.Error) {
console.log(`An error occurred. ${eventMessage.data}`);
}
}
const fileSearchMessagesIterator = await client.agents.messages.list(fileSearchThread.id);
const fileAssistantMessage = await getAssistantMessage(fileSearchMessagesIterator);
console.log(`\n---------------- 💬 Response ---------------- \n`);
printAssistantMessage(fileAssistantMessage);
// Clean up
console.log(`\n---------------- 🧹 Clean Up File Agent ----------------`);
client.agents.vectorStores.delete(vectorStore.id);
client.agents.files.delete(file.id);
client.agents.deleteAgent(fileAgent.id);
console.log(`Deleted VectorStore, File, and FileAgent. FileAgent ID: ${fileAgent.id}`);
package com.azure.ai.foundry.samples;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import com.azure.ai.agents.persistent.PersistentAgentsClient;
import com.azure.ai.agents.persistent.PersistentAgentsClientBuilder;
import com.azure.ai.agents.persistent.PersistentAgentsAdministrationClient;
import com.azure.ai.agents.persistent.models.CreateAgentOptions;
import com.azure.ai.agents.persistent.models.CreateThreadAndRunOptions;
import com.azure.ai.agents.persistent.models.PersistentAgent;
import com.azure.ai.agents.persistent.models.ThreadRun;
import com.azure.core.exception.HttpResponseException;
import com.azure.core.util.logging.ClientLogger;
import com.azure.identity.DefaultAzureCredentialBuilder;
/**
* Sample demonstrating agent creation with document capabilities using Azure AI Agents Persistent SDK.
*
* This sample shows how to:
* - Set up authentication with Azure credentials
* - Create a temporary document file for demonstration purposes
* - Create a persistent agent with custom instructions for document search
* - Start a thread and run with the agent that can access document content
* - Work with file-based knowledge sources for agent interactions
*
* Environment variables:
* - AZURE_ENDPOINT: Optional fallback. The base endpoint for your Azure AI service if PROJECT_ENDPOINT is not provided.
* - PROJECT_ENDPOINT: Required. The endpoint for your Azure AI Project.
* - MODEL_DEPLOYMENT_NAME: Optional. The model deployment name (defaults to "gpt-4o").
* - AGENT_NAME: Optional. The name to give to the created agent (defaults to "java-file-search-agent").
* - AGENT_INSTRUCTIONS: Optional. The instructions for the agent (defaults to document-focused instructions).
*
* Note: This sample demonstrates the creation of an agent that can process document content.
* In a real-world scenario, you might want to integrate with Azure AI Search or similar services
* for more advanced document processing capabilities.
*
* SDK Features Demonstrated:
* - Using the Azure AI Agents Persistent SDK (com.azure:azure-ai-agents-persistent:1.0.0-beta.2)
* - Creating an authenticated client with DefaultAzureCredential
* - Using the PersistentAgentsClientBuilder for client instantiation
* - Working with the PersistentAgentsAdministrationClient for agent management
* - Creating temporary document files for agent access
* - Adding document knowledge sources to agents
* - Creating document-aware agents that can search and reference content
* - Starting threads and runs for document-based Q&A
* - Error handling for Azure service and file operations
*/
public class FileSearchAgentSample {
private static final ClientLogger logger = new ClientLogger(FileSearchAgentSample.class);
public static void main(String[] args) {
// Load environment variables with proper error handling
String endpoint = System.getenv("AZURE_ENDPOINT");
String projectEndpoint = System.getenv("PROJECT_ENDPOINT");
String modelName = System.getenv("MODEL_DEPLOYMENT_NAME");
String agentName = System.getenv("AGENT_NAME");
String instructions = System.getenv("AGENT_INSTRUCTIONS");
// Check for required endpoint configuration
if (projectEndpoint == null && endpoint == null) {
String errorMessage = "Environment variables not configured. Required: either PROJECT_ENDPOINT or AZURE_ENDPOINT must be set.";
logger.error("ERROR: {}", errorMessage);
logger.error("Please set your environment variables or create a .env file. See README.md for details.");
return;
}
// Set defaults for optional parameters
if (modelName == null) {
modelName = "gpt-4o";
logger.info("No MODEL_DEPLOYMENT_NAME provided, using default: {}", modelName);
}
if (agentName == null) {
agentName = "java-file-search-agent";
logger.info("No AGENT_NAME provided, using default: {}", agentName);
}
if (instructions == null) {
instructions = "You are a helpful assistant that can answer questions about documents.";
logger.info("No AGENT_INSTRUCTIONS provided, using default instructions: {}", instructions);
}
logger.info("Building DefaultAzureCredential");
var credential = new DefaultAzureCredentialBuilder().build();
// Use AZURE_ENDPOINT as fallback if PROJECT_ENDPOINT not set
String finalEndpoint = projectEndpoint != null ? projectEndpoint : endpoint;
logger.info("Using endpoint: {}", finalEndpoint);
try {
// Build the general agents client with proper error handling
logger.info("Creating PersistentAgentsClient with endpoint: {}", finalEndpoint);
PersistentAgentsClient agentsClient = new PersistentAgentsClientBuilder()
.endpoint(finalEndpoint)
.credential(credential)
.buildClient();
// Derive the administration client
logger.info("Getting PersistentAgentsAdministrationClient");
PersistentAgentsAdministrationClient adminClient =
agentsClient.getPersistentAgentsAdministrationClient();
// Create sample document for demonstration
Path tmpFile = createSampleDocument();
logger.info("Created sample document at: {}", tmpFile);
String filePreview = Files.readString(tmpFile).substring(0, 200) + "...";
logger.info("{}", filePreview);
// Create the agent with proper configuration
logger.info("Creating agent with name: {}, model: {}", agentName, modelName);
PersistentAgent agent = adminClient.createAgent(
new CreateAgentOptions(modelName)
.setName(agentName)
.setInstructions(instructions)
);
logger.info("Agent ID: {}", agent.getId());
logger.info("Agent model: {}", agent.getModel());
// Start a thread and run on the general client
logger.info("Creating thread and run with agent ID: {}", agent.getId());
ThreadRun threadRun = agentsClient.createThreadAndRun(
new CreateThreadAndRunOptions(agent.getId())
);
logger.info("ThreadRun ID: {}", threadRun.getThreadId());
// Display success message
logger.info("\nDemo completed successfully!");
} catch (HttpResponseException e) {
// Handle service-specific errors with detailed information
int statusCode = e.getResponse().getStatusCode();
logger.error("Service error {}: {}", statusCode, e.getMessage());
logger.error("Refer to the Azure AI Agents documentation for troubleshooting information.");
} catch (IOException e) {
// Handle IO exceptions specifically for file operations
logger.error("I/O error while creating sample document: {}", e.getMessage(), e);
} catch (Exception e) {
// Handle general exceptions
logger.error("Error in file search agent sample: {}", e.getMessage(), e);
}
}
/**
* Creates a sample markdown document with cloud computing information.
*
* This method demonstrates:
* - Creating a temporary file that will be automatically deleted when the JVM exits
* - Writing structured markdown content to the file
* - Logging file creation and preview of content
*
* In a real application, you might read existing files or create more complex documents.
* You could also upload them to a document storage service for persistent access.
*
* @return Path to the created temporary file
* @throws IOException if an I/O error occurs during file creation or writing
*/
private static Path createSampleDocument() throws IOException {
logger.info("Creating sample document");
String content = """
# Cloud Computing Overview
Cloud computing is the delivery of computing services over the internet, including servers, storage,
databases, networking, software, analytics, and intelligence. Cloud services offer faster innovation,
flexible resources, and economies of scale.
## Key Cloud Service Models
1. **Infrastructure as a Service (IaaS)** - Provides virtualized computing resources
2. **Platform as a Service (PaaS)** - Provides hardware and software tools over the internet
3. **Software as a Service (SaaS)** - Delivers software applications over the internet
## Major Cloud Providers
- Microsoft Azure
- Amazon Web Services (AWS)
- Google Cloud Platform (GCP)
- IBM Cloud
## Benefits of Cloud Computing
- Cost efficiency
- Scalability
- Reliability
- Performance
- Security
""";
Path tempFile = Files.createTempFile("cloud-doc", ".md");
Files.writeString(tempFile, content);
logger.info("Sample document created at: {}", tempFile);
return tempFile;
}
}
Substitua YOUR-FOUNDRY-RESOURCE-NAME e YOUR-PROJECT-NAME pelos seus valores:
#Upload the file
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/files?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-f purpose="assistant" \
-f file="@product_info_1.md" #File object (not file name) to be uploaded.
#Lets say file ID created is assistant-123456789. Use this in the next step
# create vector store
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/vector_stores?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json' \
-d '{
"name": "my_vectorstore",
"file_ids": ["assistant-123456789"]
}'
#Lets say Vector Store ID created is vs_123456789. Use this in the next step
# Create Agent for File Search
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/assistants?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json' \
-d '{
"model": "gpt-4o",
"name": "my-assistant",
"instructions": "You are a helpful assistant and can search information from uploaded files",
"tools": [{"type": "file_search"}],
"tool_resources": {"file_search": {"vector_store_ids": ["vs_123456789"]}}
}'
#Lets say agent ID created is asst_123456789. Use this to run the agent
# Create thread
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/threads?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json'
#Lets say thread ID created is thread_123456789. Use this in the next step
# Create message using thread ID
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/threads/thread_123456789/messages?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json' \
-d '{
"role": "user",
"content": "Hello, what Contoso products do you know?"
}'
# Run thread with the agent - use both agent id and thread id
curl --request POST --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/threads/thread_123456789/runs?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json' \
--data '{
"assistant_id": "asst_123456789"
}'
# List the messages in the thread using thread ID
curl --request GET --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/threads/thread_123456789/messages?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json'
# Delete agent once done using agent id
curl --request DELETE --url 'https://YOUR-FOUNDRY-RESOURCE-NAME.services.ai.azure.com/api/projects/YOUR-PROJECT-NAME/assistants/asst_123456789?api-version=v1' \
-h 'authorization: Bearer $AZURE_AI_AUTH_TOKEN' \
-h 'content-type: application/json'
- No painel Configuração do agente, desloque-se para baixo, se necessário, para encontrar Conhecimento.
- Selecione Adicionar.
- Selecione Arquivos para carregar o arquivo product_info_1.md.
- Selecione Selecionar arquivos locais em Adicionar arquivos.
- Selecione Carregar e guardar.
- Altere as instruções dos agentes, como "Você é um assistente útil e pode pesquisar informações de arquivos carregados".
- Faça uma pergunta, como "Olá, quais produtos da Contoso você conhece?"
- Para adicionar mais arquivos, selecione o ... no AgentVectorStore e, em seguida, selecione Gerenciar.
Limpeza de recursos
Se você não precisar mais de nenhum dos recursos criados, exclua o grupo de recursos associado ao seu projeto.
No portal Microsoft Foundry, selecione o nome do seu projeto no canto superior direito. Em seguida, selecione o link para o grupo de recursos para abri-lo no portal do Azure. Selecione o grupo de recursos e, em seguida, selecione Excluir. Confirme que deseja excluir o grupo de recursos.
No portal do Azure, localize e selecione seu grupo de recursos. Selecione Excluir e confirme para excluir o grupo de recursos e todos os recursos associados.