Partilhar via


Guia de início rápido: implantar um cluster AKS do Azure Linux com o OS Guard (visualização) usando a CLI do Azure

Implantar no Azure

Comece a usar o Azure Linux com o OS Guard usando a CLI do Azure para implantar um Azure Linux com o OS Guard Container Host para cluster AKS. Depois de instalar os pré-requisitos, você instalará a extensão aks-preview da CLI do Azure, registrará o sinalizador de recurso AzureLinuxOSGuardPreview, criará um grupo de recursos, criará um cluster AKS, conectar-se-á ao cluster e executará um aplicativo de vários contêineres de exemplo no cluster.

Considerações e limitações

Antes de começar, revise as seguintes considerações e limitações para o Azure Linux com o OS Guard (visualização):

Pré-requisitos

  • Se não tiver uma conta do Azure, crie uma conta gratuita antes de começar.

  • Utilize o ambiente Bash no Azure Cloud Shell. Para obter mais informações, consulte Azure Cloud Shell Quickstart - Bash.

  • Se preferir executar comandos de referência da CLI localmente, instale o CLI do Azure. Se estiver a usar Windows ou macOS, considere executar o Azure CLI num contentor Docker. Para obter mais informações, consulte Como executar a CLI do Azure em um contêiner do Docker.

    • Se você estiver usando uma instalação local, entre na CLI do Azure usando o comando az login . Para concluir o processo de autenticação, siga os passos exibidos no seu terminal. Para outras opções de entrada, consulte Entrar com a CLI do Azure.
    • Quando solicitado, instale a extensão do Azure CLI na primeira utilização. Para obter mais informações sobre as extensões, veja Utilizar extensões com o CLI do Azure.
    • Execute az version para localizar a versão e as bibliotecas dependentes que estão instaladas. Para atualizar para a versão mais recente, execute az upgrade.

Instalar a extensão aks-preview da CLI do Azure

Importante

Os recursos de pré-visualização do AKS estão disponíveis numa base de autosserviço e adesão voluntária. As visualizações prévias são fornecidas "como estão" e "conforme disponíveis" e são excluídas dos contratos de nível de serviço e da garantia limitada. As versões de teste do AKS são parcialmente cobertas pelo suporte ao cliente numa base de melhor esforço. Assim sendo, estas funcionalidades não se destinam ao uso em produção. Para obter mais informações, consulte os seguintes artigos de suporte:

Para instalar a extensão aks-preview, execute o seguinte comando:

az extension add --name aks-preview

Execute o seguinte comando para atualizar para a versão mais recente da extensão lançada:

az extension update --name aks-preview

Registrar o sinalizador de funcionalidade AzureLinuxOSGuardPreview

Registe o AzureLinuxOSGuardPreview sinalizador de recurso, utilizando o comando az feature register, conforme mostrado no exemplo a seguir.

az feature register --namespace "Microsoft.ContainerService" --name "AzureLinuxOSGuardPreview"

Leva alguns minutos para que o status mostre Registrado. Verifique o status do registro usando o comando az feature show :

az feature show --namespace "Microsoft.ContainerService" --name "AzureLinuxOSGuardPreview"

Quando o estado refletir Registrado, atualize o registo do provedor de recursos Microsoft.ContainerService usando o comando `az provider register`.

az provider register --namespace "Microsoft.ContainerService"

Criar um grupo de recursos

Um grupo de recursos do Azure é um grupo lógico, no qual os recursos do Azure são implementados e geridos. Ao criar um grupo de recursos, é necessário especificar um local. Esta localização é:

  • O local de armazenamento dos metadados do grupo de recursos.
  • Onde seus recursos serão executados no Azure se você não especificar outra região ao criar um recurso.

Crie um grupo de recursos usando o comando az group create.

export RANDOM_ID="$(openssl rand -hex 3)"
export MY_RESOURCE_GROUP_NAME="myAzureLinuxOSGuardResourceGroup$RANDOM_ID"
export REGION="westeurope"

az group create --name $MY_RESOURCE_GROUP_NAME --location $REGION

Resultados:

{
  "id": "/subscriptions/xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx/resourceGroups/$MY_RESOURCE_GROUP_NAMExxxxxx",
  "location": "$REGION",
  "managedBy": null,
  "name": "$MY_RESOURCE_GROUP_NAME",
  "properties": {
    "provisioningState": "Succeeded"
  },
  "tags": null,
  "type": "Microsoft.Resources/resourceGroups"
}

Criar um cluster do Azure Linux com o OS Guard

Crie um cluster AKS usando o az aks create comando com o --os-sku parâmetro para provisionar o cluster AKS com uma imagem do Azure Linux com OS Guard.

export MY_AZ_CLUSTER_NAME="myAzureLinuxOSGuardCluster$RANDOM_ID"

az aks create --name $MY_AZ_CLUSTER_NAME --resource-group $MY_RESOURCE_GROUP_NAME --os-sku AzureLinuxOSGuard --node-osdisk-type Managed --enable-fips-image --enable-secure-boot --enable-vtpm 

Após alguns minutos, o comando conclui e retorna informações formatadas em JSON sobre o cluster.

Ligar ao cluster

Para gerenciar um cluster Kubernetes, use o cliente de linha de comando Kubernetes, kubectl. kubectl já está instalado se você usar o Azure Cloud Shell. Para instalar kubectl localmente, use o az aks install-cli comando.

  1. Configure kubectl para se conectar ao cluster do Kubernetes usando o az aks get-credentials comando. Este comando baixa credenciais e configura a CLI do Kubernetes para usá-las.

    az aks get-credentials --resource-group $MY_RESOURCE_GROUP_NAME --name $MY_AZ_CLUSTER_NAME
    
  2. Verifique a conexão ao seu cluster utilizando o comando kubectl get. Este comando devolve uma lista dos nodes do cluster.

    kubectl get nodes
    

Implementar a aplicação

Para implantar o aplicativo, use um arquivo de manifesto para criar todos os objetos necessários para executar o aplicativo AKS Store. Um arquivo de manifesto do Kubernetes define o estado desejado de um cluster, como quais imagens de contêiner devem ser executadas. O manifesto inclui as seguintes implantações e serviços do Kubernetes:

Captura de ecrã da arquitetura de exemplo da Loja Azure.

  • Vitrine: aplicativo Web para que os clientes visualizem produtos e façam pedidos.
  • Serviço do produto: Mostra as informações do produto.
  • Serviço de pedidos: Faz pedidos.
  • Rabbit MQ: Fila de mensagens para processamento de pedidos.

Observação

Não recomendamos a execução de contentores com estado, como o RabbitMQ, sem armazenamento persistente para produção. Eles são usados aqui para simplificar, mas recomendamos o uso de serviços gerenciados, como o Azure Cosmos DB ou o Azure Service Bus.

  1. Crie um arquivo nomeado aks-store-quickstart.yaml e copie no seguinte manifesto:

    apiVersion: apps/v1
    kind: StatefulSet
    metadata:
      name: rabbitmq
    spec:
      serviceName: rabbitmq
      replicas: 1
      selector:
        matchLabels:
          app: rabbitmq
      template:
        metadata:
          labels:
            app: rabbitmq
        spec:
          nodeSelector:
            "kubernetes.io/os": linux
          containers:
          - name: rabbitmq
            image: mcr.microsoft.com/mirror/docker/library/rabbitmq:3.10-management-alpine
            ports:
            - containerPort: 5672
              name: rabbitmq-amqp
            - containerPort: 15672
              name: rabbitmq-http
            env:
            - name: RABBITMQ_DEFAULT_USER
              value: "username"
            - name: RABBITMQ_DEFAULT_PASS
              value: "password"
            resources:
              requests:
                cpu: 10m
                memory: 128Mi
              limits:
                cpu: 250m
                memory: 256Mi
            volumeMounts:
            - name: rabbitmq-enabled-plugins
              mountPath: /etc/rabbitmq/enabled_plugins
              subPath: enabled_plugins
          volumes:
          - name: rabbitmq-enabled-plugins
            configMap:
              name: rabbitmq-enabled-plugins
              items:
              - key: rabbitmq_enabled_plugins
                path: enabled_plugins
    ---
    apiVersion: v1
    data:
      rabbitmq_enabled_plugins: |
        [rabbitmq_management,rabbitmq_prometheus,rabbitmq_amqp1_0].
    kind: ConfigMap
    metadata:
      name: rabbitmq-enabled-plugins            
    ---
    apiVersion: v1
    kind: Service
    metadata:
      name: rabbitmq
    spec:
      selector:
        app: rabbitmq
      ports:
        - name: rabbitmq-amqp
          port: 5672
          targetPort: 5672
        - name: rabbitmq-http
          port: 15672
          targetPort: 15672
      type: ClusterIP
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: order-service
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: order-service
      template:
        metadata:
          labels:
            app: order-service
        spec:
          nodeSelector:
            "kubernetes.io/os": linux
          containers:
          - name: order-service
            image: ghcr.io/azure-samples/aks-store-demo/order-service:latest
            ports:
            - containerPort: 3000
            env:
            - name: ORDER_QUEUE_HOSTNAME
              value: "rabbitmq"
            - name: ORDER_QUEUE_PORT
              value: "5672"
            - name: ORDER_QUEUE_USERNAME
              value: "username"
            - name: ORDER_QUEUE_PASSWORD
              value: "password"
            - name: ORDER_QUEUE_NAME
              value: "orders"
            - name: FASTIFY_ADDRESS
              value: "0.0.0.0"
            resources:
              requests:
                cpu: 1m
                memory: 50Mi
              limits:
                cpu: 75m
                memory: 128Mi
            startupProbe:
              httpGet:
                path: /health
                port: 3000
              failureThreshold: 5
              initialDelaySeconds: 20
              periodSeconds: 10
            readinessProbe:
              httpGet:
                path: /health
                port: 3000
              failureThreshold: 3
              initialDelaySeconds: 3
              periodSeconds: 5
            livenessProbe:
              httpGet:
                path: /health
                port: 3000
              failureThreshold: 5
              initialDelaySeconds: 3
              periodSeconds: 3
          initContainers:
          - name: wait-for-rabbitmq
            image: busybox
            command: ['sh', '-c', 'until nc -zv rabbitmq 5672; do echo waiting for rabbitmq; sleep 2; done;']
            resources:
              requests:
                cpu: 1m
                memory: 50Mi
              limits:
                cpu: 75m
                memory: 128Mi    
    ---
    apiVersion: v1
    kind: Service
    metadata:
      name: order-service
    spec:
      type: ClusterIP
      ports:
      - name: http
        port: 3000
        targetPort: 3000
      selector:
        app: order-service
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: product-service
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: product-service
      template:
        metadata:
          labels:
            app: product-service
        spec:
          nodeSelector:
            "kubernetes.io/os": linux
          containers:
          - name: product-service
            image: ghcr.io/azure-samples/aks-store-demo/product-service:latest
            ports:
            - containerPort: 3002
            env: 
            - name: AI_SERVICE_URL
              value: "http://ai-service:5001/"
            resources:
              requests:
                cpu: 1m
                memory: 1Mi
              limits:
                cpu: 2m
                memory: 20Mi
            readinessProbe:
              httpGet:
                path: /health
                port: 3002
              failureThreshold: 3
              initialDelaySeconds: 3
              periodSeconds: 5
            livenessProbe:
              httpGet:
                path: /health
                port: 3002
              failureThreshold: 5
              initialDelaySeconds: 3
              periodSeconds: 3
    ---
    apiVersion: v1
    kind: Service
    metadata:
      name: product-service
    spec:
      type: ClusterIP
      ports:
      - name: http
        port: 3002
        targetPort: 3002
      selector:
        app: product-service
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: store-front
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: store-front
      template:
        metadata:
          labels:
            app: store-front
        spec:
          nodeSelector:
            "kubernetes.io/os": linux
          containers:
          - name: store-front
            image: ghcr.io/azure-samples/aks-store-demo/store-front:latest
            ports:
            - containerPort: 8080
              name: store-front
            env: 
            - name: VUE_APP_ORDER_SERVICE_URL
              value: "http://order-service:3000/"
            - name: VUE_APP_PRODUCT_SERVICE_URL
              value: "http://product-service:3002/"
            resources:
              requests:
                cpu: 1m
                memory: 200Mi
              limits:
                cpu: 1000m
                memory: 512Mi
            startupProbe:
              httpGet:
                path: /health
                port: 8080
              failureThreshold: 3
              initialDelaySeconds: 5
              periodSeconds: 5
            readinessProbe:
              httpGet:
                path: /health
                port: 8080
              failureThreshold: 3
              initialDelaySeconds: 3
              periodSeconds: 3
            livenessProbe:
              httpGet:
                path: /health
                port: 8080
              failureThreshold: 5
              initialDelaySeconds: 3
              periodSeconds: 3
    ---
    apiVersion: v1
    kind: Service
    metadata:
      name: store-front
    spec:
      ports:
      - port: 80
        targetPort: 8080
      selector:
        app: store-front
      type: LoadBalancer
    

    Se você criar e salvar o arquivo YAML localmente, poderá carregar o arquivo de manifesto para seu diretório padrão no CloudShell selecionando o botão Upload/Download de arquivos e selecionando o arquivo do seu sistema de arquivos local.

  2. Implante o aplicativo usando o kubectl apply comando e especifique o nome do seu manifesto YAML.

    kubectl apply -f aks-store-quickstart.yaml
    

Testar a aplicação

Você pode validar se o aplicativo está em execução visitando o endereço IP público ou a URL do aplicativo.

Obtenha a URL do aplicativo usando os seguintes comandos:

runtime="5 minutes"
endtime=$(date -ud "$runtime" +%s)
while [[ $(date -u +%s) -le $endtime ]]
do
   STATUS=$(kubectl get pods -l app=store-front -o 'jsonpath={..status.conditions[?(@.type=="Ready")].status}')
   echo $STATUS
   if [ "$STATUS" == 'True' ]
   then
      export IP_ADDRESS=$(kubectl get service store-front --output 'jsonpath={..status.loadBalancer.ingress[0].ip}')
      echo "Service IP Address: $IP_ADDRESS"
      break
   else
      sleep 10
   fi
done
curl $IP_ADDRESS

Resultados:

<!doctype html>
<html lang="">
   <head>
      <meta charset="utf-8">
      <meta http-equiv="X-UA-Compatible" content="IE=edge">
      <meta name="viewport" content="width=device-width,initial-scale=1">
      <link rel="icon" href="/favicon.ico">
      <title>store-front</title>
      <script defer="defer" src="/js/chunk-vendors.df69ae47.js"></script>
      <script defer="defer" src="/js/app.7e8cfbb2.js"></script>
      <link href="/css/app.a5dc49f6.css" rel="stylesheet">
   </head>
   <body>
      <div id="app"></div>
   </body>
</html>
echo "You can now visit your web server at $IP_ADDRESS"

Eliminar o cluster

Se você não precisar mais deles, poderá limpar recursos desnecessários para evitar cobranças do Azure. Você pode remover o grupo de recursos, o serviço de contêiner e todos os recursos relacionados usando o az group delete comando.

Próximos passos

Neste início rápido, você implantou um cluster do Azure Linux com o OS Guard. Para saber mais sobre o Azure Linux com o OS Guard e percorrer um exemplo completo de implantação e gerenciamento de cluster, continue para o tutorial do Azure Linux com OS Guard.