Partilhar via


Como: Usar contêineres paralelos para aumentar a eficiência

Este tópico mostra como usar contêineres paralelos para armazenar e acessar dados em paralelo de forma eficiente.

O código de exemplo calcula o conjunto de números primos e Carmichael em paralelo. Então, para cada número de Carmichael, o código calcula os fatores primos desse número.

Exemplo: Determinar se um valor de entrada é um número primo

O exemplo a seguir mostra a is_prime função, que determina se um valor de entrada é um número primo, e a is_carmichael função, que determina se o valor de entrada é um número de Carmichael.

// Determines whether the input value is prime.
bool is_prime(int n)
{
   if (n < 2)
      return false;
   for (int i = 2; i < n; ++i)
   {
      if ((n % i) == 0)
         return false;
   }
   return true;
}

// Determines whether the input value is a Carmichael number.
bool is_carmichael(const int n) 
{
   if (n < 2) 
      return false;

   int k = n;
   for (int i = 2; i <= k / i; ++i) 
   {
      if (k % i == 0) 
      {
         if ((k / i) % i == 0) 
            return false;
         if ((n - 1) % (i - 1) != 0)
            return false;
         k /= i;
         i = 1;
      }
   }
   return k != n && (n - 1) % (k - 1) == 0;
}

Exemplo: Calcular números primos e Carmichael

O exemplo a seguir usa as is_prime funções e is_carmichael para calcular os conjuntos de números primos e Carmichael. O exemplo usa os algoritmos concurrency::parallel_invoke e concurrency::parallel_for para calcular cada conjunto em paralelo. Para obter mais informações sobre algoritmos paralelos, consulte Algoritmos paralelos.

Este exemplo usa um objeto concurrency::concurrent_queue para manter o conjunto de números Carmichael porque ele usará posteriormente esse objeto como uma fila de trabalho. Utiliza um objeto concurrency::concurrent_vector para manter o conjunto de números primos porque mais tarde vai percorrer esse conjunto para encontrar fatores primos.

// The maximum number to test.
const int max = 10000000;

// Holds the Carmichael numbers that are in the range [0, max).
concurrent_queue<int> carmichaels;

// Holds the prime numbers that are in the range  [0, sqrt(max)).
concurrent_vector<int> primes;

// Generate the set of Carmichael numbers and the set of prime numbers
// in parallel.
parallel_invoke(
   [&] {
      parallel_for(0, max, [&](int i) {
         if (is_carmichael(i)) {
            carmichaels.push(i);
         }
      });
   },
   [&] {
      parallel_for(0, int(sqrt(static_cast<double>(max))), [&](int i) {
         if (is_prime(i)) {
            primes.push_back(i);
         }
      });
   });

Exemplo: Encontrar todos os fatores primos de um determinado valor

O exemplo a seguir mostra a prime_factors_of função, que usa a divisão por tentativas para encontrar todos os fatores primos do valor dado.

Esta função utiliza o algoritmo concurrency::parallel_for_each para iterar pela coleção de números primos. O concurrent_vector objeto permite que o loop paralelo adicione simultaneamente fatores primos ao resultado.

// Finds all prime factors of the given value.
concurrent_vector<int> prime_factors_of(int n, 
   const concurrent_vector<int>& primes)
{
   // Holds the prime factors of n.
   concurrent_vector<int> prime_factors;
   
   // Use trial division to find the prime factors of n.
   // Every prime number that divides evenly into n is a prime factor of n.
   const int max = sqrt(static_cast<double>(n));
   parallel_for_each(begin(primes), end(primes), [&](int prime)
   {
      if (prime <= max)
      {         
         if ((n % prime) == 0)
            prime_factors.push_back(prime);
      }
   });

   return prime_factors;
}

Exemplo: Processa cada elemento na fila de números Carmichael

Este exemplo processa cada elemento na fila de números Carmichael chamando a prime_factors_of função para calcular seus fatores primos. Ele usa um grupo de tarefas para executar esse trabalho em paralelo. Para obter mais informações sobre grupos de tarefas, consulte Paralelismo de tarefas.

Este exemplo imprime os fatores primos para cada número de Carmichael se esse número tiver mais de quatro fatores primos.

// Use a task group to compute the prime factors of each 
// Carmichael number in parallel.
task_group tasks;

int carmichael;
while (carmichaels.try_pop(carmichael))
{
   tasks.run([carmichael,&primes] 
   {
      // Compute the prime factors.
      auto prime_factors = prime_factors_of(carmichael, primes);

      // For brevity, print the prime factors for the current number only
      // if there are more than 4.
      if (prime_factors.size() > 4)
      {
         // Sort and then print the prime factors.
         sort(begin(prime_factors), end(prime_factors));

         wstringstream ss;
         ss << L"Prime factors of " << carmichael << L" are:";

         for_each (begin(prime_factors), end(prime_factors), 
            [&](int prime_factor) { ss << L' ' << prime_factor; });
         ss << L'.' << endl;

         wcout << ss.str();
      }
   });
}

// Wait for the task group to finish.
tasks.wait();

Exemplo: Exemplo de código de contêiner paralelo concluído

O código a seguir mostra o exemplo completo, que usa contêineres paralelos para calcular os fatores primos dos números de Carmichael.

// carmichael-primes.cpp
// compile with: /EHsc
#include <ppl.h>
#include <concurrent_queue.h>
#include <concurrent_vector.h>
#include <iostream>
#include <sstream>

using namespace concurrency;
using namespace std;

// Determines whether the input value is prime.
bool is_prime(int n)
{
   if (n < 2)
      return false;
   for (int i = 2; i < n; ++i)
   {
      if ((n % i) == 0)
         return false;
   }
   return true;
}

// Determines whether the input value is a Carmichael number.
bool is_carmichael(const int n) 
{
   if (n < 2) 
      return false;

   int k = n;
   for (int i = 2; i <= k / i; ++i) 
   {
      if (k % i == 0) 
      {
         if ((k / i) % i == 0) 
            return false;
         if ((n - 1) % (i - 1) != 0)
            return false;
         k /= i;
         i = 1;
      }
   }
   return k != n && (n - 1) % (k - 1) == 0;
}

// Finds all prime factors of the given value.
concurrent_vector<int> prime_factors_of(int n, 
   const concurrent_vector<int>& primes)
{
   // Holds the prime factors of n.
   concurrent_vector<int> prime_factors;
   
   // Use trial division to find the prime factors of n.
   // Every prime number that divides evenly into n is a prime factor of n.
   const int max = sqrt(static_cast<double>(n));
   parallel_for_each(begin(primes), end(primes), [&](int prime)
   {
      if (prime <= max)
      {         
         if ((n % prime) == 0)
            prime_factors.push_back(prime);
      }
   });

   return prime_factors;
}

int wmain()
{
   // The maximum number to test.
   const int max = 10000000;
   
   // Holds the Carmichael numbers that are in the range [0, max).
   concurrent_queue<int> carmichaels;

   // Holds the prime numbers that are in the range  [0, sqrt(max)).
   concurrent_vector<int> primes;
   
   // Generate the set of Carmichael numbers and the set of prime numbers
   // in parallel.
   parallel_invoke(
      [&] {
         parallel_for(0, max, [&](int i) {
            if (is_carmichael(i)) {
               carmichaels.push(i);
            }
         });
      },
      [&] {
         parallel_for(0, int(sqrt(static_cast<double>(max))), [&](int i) {
            if (is_prime(i)) {
               primes.push_back(i);
            }
         });
      });

   // Use a task group to compute the prime factors of each 
   // Carmichael number in parallel.
   task_group tasks;

   int carmichael;
   while (carmichaels.try_pop(carmichael))
   {
      tasks.run([carmichael,&primes] 
      {
         // Compute the prime factors.
         auto prime_factors = prime_factors_of(carmichael, primes);

         // For brevity, print the prime factors for the current number only
         // if there are more than 4.
         if (prime_factors.size() > 4)
         {
            // Sort and then print the prime factors.
            sort(begin(prime_factors), end(prime_factors));

            wstringstream ss;
            ss << L"Prime factors of " << carmichael << L" are:";

            for_each (begin(prime_factors), end(prime_factors), 
               [&](int prime_factor) { ss << L' ' << prime_factor; });
            ss << L'.' << endl;

            wcout << ss.str();
         }
      });
   }

   // Wait for the task group to finish.
   tasks.wait();
}

Este exemplo gera a seguinte saída.

Prime factors of 9890881 are: 7 11 13 41 241.
Prime factors of 825265 are: 5 7 17 19 73.
Prime factors of 1050985 are: 5 13 19 23 37.

Compilando o código

Copie o código de exemplo e cole-o em um projeto do Visual Studio ou cole-o em um arquivo chamado carmichael-primes.cpp e, em seguida, execute o seguinte comando em uma janela do prompt de comando do Visual Studio.

cl.exe /EHsc carmichael-primes.cpp

Ver também

Contêineres e objetos paralelos
Paralelismo de tarefas
concurrent_vetor Classe
concurrent_queue Classe
Função parallel_invoke
Função parallel_for
task_group Classe