Microsoft Agent Framework 支持创建使用 OpenAI 响应 服务的代理。
入门
将所需的 NuGet 包添加到项目。
dotnet add package Microsoft.Agents.AI.OpenAI --prerelease
创建 OpenAI 响应代理
首先需要创建客户端以连接到 OpenAI 服务。
using System;
using Microsoft.Agents.AI;
using OpenAI;
OpenAIClient client = new OpenAIClient("<your_api_key>");
OpenAI 支持多个服务,这些服务都提供模型调用功能。 我们需要选择响应服务来创建基于响应的代理。
#pragma warning disable OPENAI001 // Type is for evaluation purposes only and is subject to change or removal in future updates.
var responseClient = client.GetOpenAIResponseClient("gpt-4o-mini");
#pragma warning restore OPENAI001
最后,在 CreateAIAgent 上使用 ResponseClient 扩展方法创建代理。
AIAgent agent = responseClient.CreateAIAgent(
instructions: "You are good at telling jokes.",
name: "Joker");
// Invoke the agent and output the text result.
Console.WriteLine(await agent.RunAsync("Tell me a joke about a pirate."));
使用代理
代理是标准的 AIAgent,并支持所有标准 AIAgent 操作。
有关如何运行和与代理交互的详细信息,请参阅 代理入门教程 。
先决条件
安装 Microsoft Agent Framework 包。
pip install agent-framework --pre
配置
环境变量
设置 OpenAI 身份验证所需的环境变量:
# Required for OpenAI API access
OPENAI_API_KEY="your-openai-api-key"
OPENAI_RESPONSES_MODEL_ID="gpt-4o" # or your preferred Responses-compatible model
或者,可以在项目根目录中使用 .env 文件:
OPENAI_API_KEY=your-openai-api-key
OPENAI_RESPONSES_MODEL_ID=gpt-4o
入门
从代理框架导入所需的类:
import asyncio
from agent_framework.openai import OpenAIResponsesClient
创建 OpenAI 响应代理
基本代理创建
创建响应代理的最简单方法:
async def basic_example():
# Create an agent using OpenAI Responses
agent = OpenAIResponsesClient().create_agent(
name="WeatherBot",
instructions="You are a helpful weather assistant.",
)
result = await agent.run("What's a good way to check the weather?")
print(result.text)
使用显式配置
可以提供显式配置,而不是依赖于环境变量:
async def explicit_config_example():
agent = OpenAIResponsesClient(
ai_model_id="gpt-4o",
api_key="your-api-key-here",
).create_agent(
instructions="You are a helpful assistant.",
)
result = await agent.run("Tell me about AI.")
print(result.text)
基本使用模式
流式处理响应
对即时生成的响应进行获取,以提升用户体验。
async def streaming_example():
agent = OpenAIResponsesClient().create_agent(
instructions="You are a creative storyteller.",
)
print("Assistant: ", end="", flush=True)
async for chunk in agent.run_stream("Tell me a short story about AI."):
if chunk.text:
print(chunk.text, end="", flush=True)
print() # New line after streaming
代理功能
推理模型
对 GPT-5 等模型使用高级推理功能:
from agent_framework import HostedCodeInterpreterTool, TextContent, TextReasoningContent
async def reasoning_example():
agent = OpenAIResponsesClient(ai_model_id="gpt-5").create_agent(
name="MathTutor",
instructions="You are a personal math tutor. When asked a math question, "
"write and run code to answer the question.",
tools=HostedCodeInterpreterTool(),
reasoning={"effort": "high", "summary": "detailed"},
)
print("Assistant: ", end="", flush=True)
async for chunk in agent.run_stream("Solve: 3x + 11 = 14"):
if chunk.contents:
for content in chunk.contents:
if isinstance(content, TextReasoningContent):
# Reasoning content in gray text
print(f"\033[97m{content.text}\033[0m", end="", flush=True)
elif isinstance(content, TextContent):
print(content.text, end="", flush=True)
print()
结构化输出
获取结构化格式的响应:
from pydantic import BaseModel
from agent_framework import AgentRunResponse
class CityInfo(BaseModel):
"""A structured output for city information."""
city: str
description: str
async def structured_output_example():
agent = OpenAIResponsesClient().create_agent(
name="CityExpert",
instructions="You describe cities in a structured format.",
)
# Non-streaming structured output
result = await agent.run("Tell me about Paris, France", response_format=CityInfo)
if result.value:
city_data = result.value
print(f"City: {city_data.city}")
print(f"Description: {city_data.description}")
# Streaming structured output
structured_result = await AgentRunResponse.from_agent_response_generator(
agent.run_stream("Tell me about Tokyo, Japan", response_format=CityInfo),
output_format_type=CityInfo,
)
if structured_result.value:
tokyo_data = structured_result.value
print(f"City: {tokyo_data.city}")
print(f"Description: {tokyo_data.description}")
函数工具
为代理配备自定义功能:
from typing import Annotated
from pydantic import Field
def get_weather(
location: Annotated[str, Field(description="The location to get weather for")]
) -> str:
"""Get the weather for a given location."""
# Your weather API implementation here
return f"The weather in {location} is sunny with 25°C."
async def tools_example():
agent = OpenAIResponsesClient().create_agent(
instructions="You are a helpful weather assistant.",
tools=get_weather,
)
result = await agent.run("What's the weather like in Tokyo?")
print(result.text)
图像生成
使用响应 API 生成图像:
from agent_framework import DataContent, UriContent
async def image_generation_example():
agent = OpenAIResponsesClient().create_agent(
instructions="You are a helpful AI that can generate images.",
tools=[{
"type": "image_generation",
"size": "1024x1024",
"quality": "low",
}],
)
result = await agent.run("Generate an image of a sunset over the ocean.")
# Check for generated images in the response
for content in result.contents:
if isinstance(content, (DataContent, UriContent)):
print(f"Image generated: {content.uri}")
代码解释器
使助手能够执行 Python 代码:
from agent_framework import HostedCodeInterpreterTool
async def code_interpreter_example():
agent = OpenAIResponsesClient().create_agent(
instructions="You are a helpful assistant that can write and execute Python code.",
tools=HostedCodeInterpreterTool(),
)
result = await agent.run("Calculate the factorial of 100 using Python code.")
print(result.text)
使用代理
代理是标准 BaseAgent 代理,支持所有标准代理操作。
有关如何运行和与代理交互的详细信息,请参阅 代理入门教程 。