重要
此功能目前以公共预览版提供。
通过内存,AI 代理可以记住来自对话早期或先前对话中的信息。 这样,代理就可以提供上下文感知响应,并随着时间的推移生成个性化体验。 使用完全托管的 Postgres OLTP 数据库 Databricks Lakebase 管理聊天状态和历史记录。
要求
- Lakebase 实例,请参阅 创建和管理数据库实例。
短期与长期记忆
短期记忆负责捕获在单个会话中的上下文,而长期记忆负责提取和存储在多个会话中的关键信息。 可以使用任一种类型的内存或两种类型的内存来构建代理。
| 短期内存 | 长期记忆 |
|---|---|
| 使用线程 ID 和检查点在单个会话中捕获上下文 维护会话中后续问题的上下文 使用时间旅行调试和测试聊天流 |
跨多个会话自动提取和存储密钥见解 基于过去的首选项个性化交互 构建一个关于用户的知识库,以随时间推移改进响应 |
笔记本示例
具有短期记忆的代理
具有长期内存的代理
查询已部署的代理
将代理部署到模型服务终结点后,请参阅 查询已部署的马赛克 AI 代理 以获取查询说明。
若要传入线程 ID,请使用 extra_body 参数。 以下示例演示如何将线程 ID ResponsesAgent 传递到终结点:
response1 = client.responses.create(
model=endpoint,
input=[{"role": "user", "content": "What are stateful agents?"}],
extra_body={
"custom_inputs": {"thread_id": thread_id}
}
)
如果使用的是自动传递 ChatContext (如 Playground 或 Review 应用)的客户端,会话 ID 和用户 ID 将自动传入短期/长期内存用例。
短期记忆时间旅行
对于具有短期内存的代理,请使用 LangGraph 时间旅行 从检查点恢复执行。 可以重播对话或修改对话,以浏览替代路径。 每次从检查点继续时,LangGraph 会在对话历史记录中创建一个新的分支,保留原始数据,同时便于进行实验。
在代理代码中,创建在类中检索检查点历史记录和更新检查点状态的
LangGraphResponsesAgent函数:from typing import List, Dict def get_checkpoint_history(self, thread_id: str, limit: int = 10) -> List[Dict[str, Any]]: """Retrieve checkpoint history for a thread. Args: thread_id: The thread identifier limit: Maximum number of checkpoints to return Returns: List of checkpoint information including checkpoint_id, timestamp, and next nodes """ config = {"configurable": {"thread_id": thread_id}} with CheckpointSaver(instance_name=LAKEBASE_INSTANCE_NAME) as checkpointer: graph = self._create_graph(checkpointer) history = [] for state in graph.get_state_history(config): if len(history) >= limit: break history.append({ "checkpoint_id": state.config["configurable"]["checkpoint_id"], "thread_id": thread_id, "timestamp": state.created_at, "next_nodes": state.next, "message_count": len(state.values.get("messages", [])), # Include last message summary for context "last_message": self._get_last_message_summary(state.values.get("messages", [])) }) return history def _get_last_message_summary(self, messages: List[Any]) -> Optional[str]: """Get a snippet of the last message for checkpoint identification""" return getattr(messages[-1], "content", "")[:100] if messages else None def update_checkpoint_state(self, thread_id: str, checkpoint_id: str, new_messages: Optional[List[Dict]] = None) -> Dict[str, Any]: """Update state at a specific checkpoint (used for modifying conversation history). Args: thread_id: The thread identifier checkpoint_id: The checkpoint to update new_messages: Optional new messages to set at this checkpoint Returns: New checkpoint configuration including the new checkpoint_id """ config = { "configurable": { "thread_id": thread_id, "checkpoint_id": checkpoint_id } } with CheckpointSaver(instance_name=LAKEBASE_INSTANCE_NAME) as checkpointer: graph = self._create_graph(checkpointer) # Prepare the values to update values = {} if new_messages: cc_msgs = self.prep_msgs_for_cc_llm(new_messages) values["messages"] = cc_msgs # Update the state (creates a new checkpoint) new_config = graph.update_state(config, values=values) return { "thread_id": thread_id, "checkpoint_id": new_config["configurable"]["checkpoint_id"], "parent_checkpoint_id": checkpoint_id }更新
predict和predict_stream函数以支持传入检查点:Predict
def predict(self, request: ResponsesAgentRequest) -> ResponsesAgentResponse: """Non-streaming prediction""" # The same thread_id is used by BOTH predict() and predict_stream() ci = dict(request.custom_inputs or {}) if "thread_id" not in ci: ci["thread_id"] = str(uuid.uuid4()) request.custom_inputs = ci outputs = [ event.item for event in self.predict_stream(request) if event.type == "response.output_item.done" ] # Include thread_id and checkpoint_id in custom outputs custom_outputs = { "thread_id": ci["thread_id"] } if "checkpoint_id" in ci: custom_outputs["parent_checkpoint_id"] = ci["checkpoint_id"] try: history = self.get_checkpoint_history(ci["thread_id"], limit=1) if history: custom_outputs["checkpoint_id"] = history[0]["checkpoint_id"] except Exception as e: logger.warning(f"Could not retrieve new checkpoint_id: {e}") return ResponsesAgentResponse(output=outputs, custom_outputs=custom_outputs)Predict_stream
def predict_stream( self, request: ResponsesAgentRequest, ) -> Generator[ResponsesAgentStreamEvent, None, None]: """Streaming prediction with PostgreSQL checkpoint branching support. Accepts in custom_inputs: - thread_id: Conversation thread identifier for session - checkpoint_id (optional): Checkpoint to resume from (for branching) """ # Get thread ID and checkpoint ID from custom inputs custom_inputs = request.custom_inputs or {} thread_id = custom_inputs.get("thread_id", str(uuid.uuid4())) # generate new thread ID if one is not passed in checkpoint_id = custom_inputs.get("checkpoint_id") # Optional for branching # Convert incoming Responses messages to LangChain format langchain_msgs = self.prep_msgs_for_cc_llm([i.model_dump() for i in request.input]) # Build checkpoint configuration checkpoint_config = {"configurable": {"thread_id": thread_id}} # If checkpoint_id is provided, we're branching from that checkpoint if checkpoint_id: checkpoint_config["configurable"]["checkpoint_id"] = checkpoint_id logger.info(f"Branching from checkpoint: {checkpoint_id} in thread: {thread_id}") # DATABASE CONNECTION POOLING LOGIC FOLLOWS # Use connection from pool
然后,测试检查点分支:
启动对话线程并添加一些消息:
from agent import AGENT # Initial conversation - starts a new thread response1 = AGENT.predict({ "input": [{"role": "user", "content": "I'm planning for an upcoming trip!"}], }) print(response1.model_dump(exclude_none=True)) thread_id = response1.custom_outputs["thread_id"] # Within the same thread, ask a follow-up question - short-term memory will remember previous messages in the same thread/conversation session response2 = AGENT.predict({ "input": [{"role": "user", "content": "I'm headed to SF!"}], "custom_inputs": {"thread_id": thread_id} }) print(response2.model_dump(exclude_none=True)) # Within the same thread, ask a follow-up question - short-term memory will remember previous messages in the same thread/conversation session response3 = AGENT.predict({ "input": [{"role": "user", "content": "Where did I say I'm going?"}], "custom_inputs": {"thread_id": thread_id} }) print(response3.model_dump(exclude_none=True))检索检查点历史记录,并使用其他消息对对话进行分叉:
# Get checkpoint history to find branching point history = AGENT.get_checkpoint_history(thread_id, 20) # Retrieve checkpoint at index - indices count backward from most recent checkpoint index = max(1, len(history) - 4) branch_checkpoint = history[index]["checkpoint_id"] # Branch from node with next_node = `('__start__',)` to re-input message to agent at certain part of conversation # I want to update the information of which city I am going to # Within the same thread, branch from a checkpoint and override it with different context to continue the conversation in a new fork response4 = AGENT.predict({ "input": [{"role": "user", "content": "I'm headed to New York!"}], "custom_inputs": { "thread_id": thread_id, "checkpoint_id": branch_checkpoint # Branch from this checkpoint! } }) print(response4.model_dump(exclude_none=True)) # Thread ID stays the same even though it branched from a checkpoint: branched_thread_id = response4.custom_outputs["thread_id"] print(f"original thread id was {thread_id}") print(f"new thread id after branching is the same as original: {branched_thread_id}") # Continue the conversation in the same thread and it will pick up from the information you tell it in your branch response5 = AGENT.predict({ "input": [{"role": "user", "content": "Where am I going?"}], "custom_inputs": { "thread_id": thread_id, } }) print(response5.model_dump(exclude_none=True))