法官对齐教 LLM 法官通过系统反馈来匹配人类评估标准。 此过程将泛型评估师转变为了解你独特的质量标准的领域特定专家,与基线评委相比,将与人工评估的协议提高30%至50%。
判断对齐遵循三步工作流:
- 生成初始评估:创建法官并评估跟踪以建立基线
- 收集人工反馈:域专家审阅并纠正评估员的判断
- 对齐和部署:使用 SIMBA 优化器根据人工反馈改进判断
该系统使用简化引导聚合 (SIMBA) 作为默认优化策略,利用 DSPy 的实现来迭代优化评估指令。
要求
MLflow 3.4.0 或更高版本用于使用评判对齐功能
%pip install --upgrade "mlflow[databricks]>=3.4.0" dbutils.library.restartPython()已使用
创建了一个法官 人工反馈评估名称必须与评审名称完全匹配。 例如,如果你的法官名为
product_quality,那么你的人类反馈也必须使用相同的名称product_quality。对齐方式适用于使用
make_judge()基于模板的评估创建的法官。
步骤 1:创建评审并生成痕迹
创建初始判断,并使用评估生成跟踪。 至少需要 10 个跟踪,但 50-100 个跟踪提供更好的对齐结果。
from mlflow.genai.judges import make_judge
import mlflow
# Create an MLflow experiment for alignment
experiment_id = mlflow.create_experiment("product-quality-alignment")
mlflow.set_experiment(experiment_id=experiment_id)
# Create initial judge with template-based evaluation
initial_judge = make_judge(
name="product_quality",
instructions=(
"Evaluate if the product description in {{ outputs }} "
"is accurate and helpful for the query in {{ inputs }}. "
"Rate as: excellent, good, fair, or poor"
),
model="databricks:/databricks-gpt-oss-120b",
)
生成跟踪记录并运行评测程序。
# Generate traces for alignment (minimum 10, recommended 50+)
traces = []
for i in range(50):
with mlflow.start_span(f"product_description_{i}") as span:
# Your application logic here
query = f"Tell me about product {i}"
description = generate_product_description(query) # Replace with your application logic
# Log inputs and outputs
span.set_inputs({"query": query})
span.set_outputs({"description": description})
traces.append(span.trace_id)
# Run initial judge on all traces
for trace_id in traces:
trace = mlflow.get_trace(trace_id)
inputs = trace.data.spans[0].inputs
outputs = trace.data.spans[0].outputs
# Generate judge assessment
judge_result = initial_judge(inputs=inputs, outputs=outputs)
# Log judge feedback to the trace
mlflow.log_feedback(
trace_id=trace_id,
name="product_quality",
value=judge_result.value,
rationale=judge_result.rationale,
)
步骤 2:收集人工反馈
收集人工反馈,以训练评审掌握你的质量标准。 从以下方法中进行选择:
Databricks 用户界面评审
在以下情况下收集人工反馈:
- 你需要域专家来评审输出
- 你希望以迭代方式优化反馈条件
- 你正在使用较小的数据集(< 100 个示例)
使用 MLflow UI 手动查看并提供反馈:
- 导航到 Databricks 工作区中的 MLflow 试验
- 单击“ 评估 ”选项卡以查看跟踪
- 查看每个踪迹及其评审
- 使用 UI 的反馈界面添加人工反馈
- 确保反馈名称与评审名称完全匹配(“product_quality”)
编程反馈
在以下情况下使用编程反馈:
- 你有预先存在的基础事实标注
- 你正在使用大型数据集(100 多个示例)
- 你需要可重现的反馈集合
如果有现有的地实标签,请以编程方式记录它们:
from mlflow.entities import AssessmentSource, AssessmentSourceType
# Your ground truth data
ground_truth_data = [
{"trace_id": traces[0], "label": "excellent", "rationale": "Comprehensive and accurate description"},
{"trace_id": traces[1], "label": "poor", "rationale": "Missing key product features"},
{"trace_id": traces[2], "label": "good", "rationale": "Accurate but could be more detailed"},
# ... more ground truth labels
]
# Log human feedback for each trace
for item in ground_truth_data:
mlflow.log_feedback(
trace_id=item["trace_id"],
name="product_quality", # Must match judge name
value=item["label"],
rationale=item.get("rationale", ""),
source=AssessmentSource(
source_type=AssessmentSourceType.HUMAN,
source_id="ground_truth_dataset"
),
)
反馈收集的最佳做法
- 不同的审阅者:包括多个领域专家,以捕获各种观点
- 平衡示例:至少包括 30% 的负面示例(差评/中评)。
- 明确的理由:提供分级的详细说明
- 代表性示例:涵盖边缘事例和常见方案
步骤 3:对齐并注册法官
拥有足够的人工反馈后,使法官保持一致:
默认优化器(建议)
MLflow 使用 DSPy 的 SIMBA 实现(简化的多启动聚合)提供默认对齐优化器。 在不指定优化器的情况下调用 align() 时,会自动使用 SIMBA 优化器:
from mlflow.genai.judges.optimizers import SIMBAAlignmentOptimizer
# Retrieve traces with both judge and human assessments
traces_for_alignment = mlflow.search_traces(
experiment_ids=[experiment_id],
max_results=100,
return_type="list"
)
# Filter for traces with both judge and human feedback
# Only traces with both assessments can be used for alignment
valid_traces = []
for trace in traces_for_alignment:
feedbacks = trace.search_assessments(name="product_quality")
has_judge = any(f.source.source_type == "LLM_JUDGE" for f in feedbacks)
has_human = any(f.source.source_type == "HUMAN" for f in feedbacks)
if has_judge and has_human:
valid_traces.append(trace)
if len(valid_traces) >= 10:
# Create SIMBA optimizer with Databricks model
optimizer = SIMBAAlignmentOptimizer(
model="databricks:/databricks-gpt-oss-120b"
)
# Align the judge based on human feedback
aligned_judge = initial_judge.align(optimizer, valid_traces)
# Register the aligned judge for production use
aligned_judge.register(
experiment_id=experiment_id,
name="product_quality_aligned",
tags={"alignment_date": "2025-10-23", "num_traces": str(len(valid_traces))}
)
print(f"Successfully aligned judge using {len(valid_traces)} traces")
else:
print(f"Insufficient traces for alignment. Found {len(valid_traces)}, need at least 10")
显式优化器
from mlflow.genai.judges.optimizers import SIMBAAlignmentOptimizer
# Retrieve traces with both judge and human assessments
traces_for_alignment = mlflow.search_traces(
experiment_ids=[experiment_id], max_results=15, return_type="list"
)
# Align the judge using human corrections (minimum 10 traces recommended)
if len(traces_for_alignment) >= 10:
# Explicitly specify SIMBA with custom model configuration
optimizer = SIMBAAlignmentOptimizer(model="databricks:/databricks-gpt-oss-120b")
aligned_judge = initial_judge.align(optimizer, traces_for_alignment)
# Register the aligned judge
aligned_judge.register(experiment_id=experiment_id)
print("Judge aligned successfully with human feedback")
else:
print(f"Need at least 10 traces for alignment, have {len(traces_for_alignment)}")
启用详细日志记录
若要监视对齐过程,请为 SIMBA 优化器启用调试日志记录:
import logging
# Enable detailed SIMBA logging
logging.getLogger("mlflow.genai.judges.optimizers.simba").setLevel(logging.DEBUG)
# Run alignment with verbose output
aligned_judge = initial_judge.align(optimizer, valid_traces)
验证对齐
验证对齐是否改进了判断:
def test_alignment_improvement(
original_judge, aligned_judge, test_traces: list
) -> dict:
"""Compare judge performance before and after alignment."""
original_correct = 0
aligned_correct = 0
for trace in test_traces:
# Get human ground truth from trace assessments
feedbacks = trace.search_assessments(type="feedback")
human_feedback = next(
(f for f in feedbacks if f.source.source_type == "HUMAN"), None
)
if not human_feedback:
continue
# Get judge evaluations
# Judges can evaluate entire traces instead of individual inputs/outputs
original_eval = original_judge(trace=trace)
aligned_eval = aligned_judge(trace=trace)
# Check agreement with human
if original_eval.value == human_feedback.value:
original_correct += 1
if aligned_eval.value == human_feedback.value:
aligned_correct += 1
total = len(test_traces)
return {
"original_accuracy": original_correct / total,
"aligned_accuracy": aligned_correct / total,
"improvement": (aligned_correct - original_correct) / total,
}
创建自定义对齐优化器
请扩展基类以实现专用对齐策略。
from mlflow.genai.judges.base import AlignmentOptimizer, Judge
from mlflow.entities.trace import Trace
class MyCustomOptimizer(AlignmentOptimizer):
"""Custom optimizer implementation for judge alignment."""
def __init__(self, model: str = None, **kwargs):
"""Initialize your optimizer with custom parameters."""
self.model = model
# Add any custom initialization logic
def align(self, judge: Judge, traces: list[Trace]) -> Judge:
"""
Implement your alignment algorithm.
Args:
judge: The judge to be optimized
traces: List of traces containing human feedback
Returns:
A new Judge instance with improved alignment
"""
# Your custom alignment logic here
# 1. Extract feedback from traces
# 2. Analyze disagreements between judge and human
# 3. Generate improved instructions
# 4. Return new judge with better alignment
# Example: Return judge with modified instructions
from mlflow.genai.judges import make_judge
improved_instructions = self._optimize_instructions(judge.instructions, traces)
return make_judge(
name=judge.name,
instructions=improved_instructions,
model=judge.model,
)
def _optimize_instructions(self, instructions: str, traces: list[Trace]) -> str:
"""Your custom optimization logic."""
# Implement your optimization strategy
pass
# Create your custom optimizer
custom_optimizer = MyCustomOptimizer(model="your-model")
# Use it for alignment
aligned_judge = initial_judge.align(traces_with_feedback, custom_optimizer)
局限性
- 判定对齐不支持代理驱动或期望驱动的评估。