如何使用 Microsoft Fabric REST API 创建和更新 Spark 作业定义

Microsoft Fabric REST API 为 Fabric 项的 CRUD作提供服务终结点。 在本教程中,我们将逐步演示介绍如何创建和更新 Spark 作业定义项目的整个场景。 涉及三个大致的步骤:

  1. 创建具有某种初始状态的 Spark 作业定义项。
  2. 上传主定义文件和其他库文件。
  3. 用主定义文件的 OneLake URL 和其他库文件来更新 Spark 作业定义项。

先决条件

创建具有初始状态的 Spark 作业定义项

Microsoft Fabric REST API 定义了一个用于 Fabric 项 CRUD 操作的统一终结点。 终结点为 https://api.fabric.microsoft.com/v1/workspaces/{workspaceId}/items

项目信息的详细内容是在请求正文中指定的。 下面是用于创建 Spark 作业定义项的请求正文示例:

{
    "displayName": "SJDHelloWorld",
    "type": "SparkJobDefinition",
    "definition": {
        "format": "SparkJobDefinitionV1",
        "parts": [
            {
                "path": "SparkJobDefinitionV1.json",
                "payload": "<REDACTED>",
                "payloadType": "InlineBase64"
            }
        ]
    }
}

在此示例中,Spark 作业定义项命名 SJDHelloWorld。 该 payload 字段是详细设置的 base64 编码内容。 解码后,内容为:

{
    "executableFile":null,
    "defaultLakehouseArtifactId":"",
    "mainClass":"",
    "additionalLakehouseIds":[],
    "retryPolicy":null,
    "commandLineArguments":"",
    "additionalLibraryUris":[],
    "language":"",
    "environmentArtifactId":null
}

下面是两个帮助程序函数,用于对详细设置进行编码和解码:

import base64

def json_to_base64(json_data):
    # Serialize the JSON data to a string
    json_string = json.dumps(json_data)
    
    # Encode the JSON string as bytes
    json_bytes = json_string.encode('utf-8')
    
    # Encode the bytes as Base64
    base64_encoded = base64.b64encode(json_bytes).decode('utf-8')
    
    return base64_encoded

def base64_to_json(base64_data):
    # Decode the Base64-encoded string to bytes
    base64_bytes = base64_data.encode('utf-8')
    
    # Decode the bytes to a JSON string
    json_string = base64.b64decode(base64_bytes).decode('utf-8')
    
    # Deserialize the JSON string to a Python dictionary
    json_data = json.loads(json_string)
    
    return json_data

下面是用于创建 Spark 作业定义项的代码片段:

import requests

bearerToken = "<REDACTED>"  # Replace this token with the real AAD token

headers = {
    "Authorization": f"Bearer {bearerToken}", 
    "Content-Type": "application/json"  # Set the content type based on your request
}

payload = "<REDACTED>"

# Define the payload data for the POST request
payload_data = {
    "displayName": "SJDHelloWorld",
    "Type": "SparkJobDefinition",
    "definition": {
        "format": "SparkJobDefinitionV1",
        "parts": [
            {
                "path": "SparkJobDefinitionV1.json",
                "payload": payload,
                "payloadType": "InlineBase64"
            }
        ]
    }
}

# Make the POST request with Bearer authentication
sjdCreateUrl = f"https://api.fabric.microsoft.com//v1/workspaces/{workspaceId}/items"
response = requests.post(sjdCreateUrl, json=payload_data, headers=headers)

上传主定义文件和其他 lib 文件

将文件上传到 OneLake 需要存储令牌。 下面是用于获取存储令牌的帮助程序函数:

import msal

def getOnelakeStorageToken():
    app = msal.PublicClientApplication(
        "<REDACTED>",  # This field should be the client ID 
        authority="https://login.microsoftonline.com/microsoft.com")

    result = app.acquire_token_interactive(scopes=["https://storage.azure.com/.default"])

    print(f"Successfully acquired AAD token with storage audience:{result['access_token']}")

    return result['access_token']

现在已创建 Spark 作业定义项。 若要使其可运行,我们需要设置主定义文件和所需属性。 用于上传此 SJD 项的文件的终结点是 https://onelake.dfs.fabric.microsoft.com/{workspaceId}/{sjdartifactid}。 应使用上一步中的同一个“workspaceId”。 可以在上一步的响应消息体中找到“sjdartifactid”的值。 下面是用于设置主定义文件的代码片段:

import requests

# Three steps are required: create file, append file, flush file

onelakeEndPoint = "https://onelake.dfs.fabric.microsoft.com/workspaceId/sjdartifactid"  # Replace the ID of workspace and artifact with the right one
mainExecutableFile = "main.py"  # The name of the main executable file
mainSubFolder = "Main"  # The sub folder name of the main executable file. Don't change this value


onelakeRequestMainFileCreateUrl = f"{onelakeEndPoint}/{mainSubFolder}/{mainExecutableFile}?resource=file"  # The URL for creating the main executable file via the 'file' resource type
onelakePutRequestHeaders = {
    "Authorization": f"Bearer {onelakeStorageToken}",  # The storage token can be achieved from the helper function above
}

onelakeCreateMainFileResponse = requests.put(onelakeRequestMainFileCreateUrl, headers=onelakePutRequestHeaders)
if onelakeCreateMainFileResponse.status_code == 201:
    # Request was successful
    print(f"Main File '{mainExecutableFile}' was successfully created in OneLake.")

# With the previous step, the main executable file is created in OneLake. Now we need to append the content of the main executable file

appendPosition = 0
appendAction = "append"

### Main File Append.
mainExecutableFileSizeInBytes = 83  # The size of the main executable file in bytes
onelakeRequestMainFileAppendUrl = f"{onelakeEndPoint}/{mainSubFolder}/{mainExecutableFile}?position={appendPosition}&action={appendAction}"
mainFileContents = "<REDACTED>"  # The content of the main executable file, please replace this with the real content of the main executable file
mainExecutableFileSizeInBytes = 83  # The size of the main executable file in bytes, this value should match the size of the mainFileContents

onelakePatchRequestHeaders = {
    "Authorization": f"Bearer {onelakeStorageToken}",
    "Content-Type": "text/plain"
}

onelakeAppendMainFileResponse = requests.patch(onelakeRequestMainFileAppendUrl, data = mainFileContents, headers=onelakePatchRequestHeaders)
if onelakeAppendMainFileResponse.status_code == 202:
    # Request was successful
    print(f"Successfully accepted main file '{mainExecutableFile}' append data.")

# With the previous step, the content of the main executable file is appended to the file in OneLake. Now we need to flush the file

flushAction = "flush"

### Main File flush
onelakeRequestMainFileFlushUrl = f"{onelakeEndPoint}/{mainSubFolder}/{mainExecutableFile}?position={mainExecutableFileSizeInBytes}&action={flushAction}"
print(onelakeRequestMainFileFlushUrl)
onelakeFlushMainFileResponse = requests.patch(onelakeRequestMainFileFlushUrl, headers=onelakePatchRequestHeaders)
if onelakeFlushMainFileResponse.status_code == 200:
    print(f"Successfully flushed main file '{mainExecutableFile}' contents.")
else:
    print(onelakeFlushMainFileResponse.json())

请遵循相同的过程根据需要上传其他 lib 文件。

使用主定义文件和其他 lib 文件的 OneLake URL 更新 Spark 作业定义项

到目前为止,我们已经创建了一个 Spark 作业定义项,其中包含一些初始状态,并上传了主定义文件和其他库文件。 最后一步是更新 Spark 作业定义项,以设置主定义文件的 URL 属性和其他库文件。 用于更新 Spark 作业定义项的终结点为 https://api.fabric.microsoft.com/v1/workspaces/{workspaceId}/items/{sjdartifactid}。 应使用前面步骤中的同一“workspaceId”和“sjdartifactid”。 下面是用于更新 Spark 作业定义项的代码片段:

mainAbfssPath = f"abfss://{workspaceId}@onelake.dfs.fabric.microsoft.com/{sjdartifactid}/Main/{mainExecutableFile}"  # The workspaceId and sjdartifactid are the same as previous steps, the mainExecutableFile is the name of the main executable file
libsAbfssPath = f"abfss://{workspaceId}@onelake.dfs.fabric.microsoft.com/{sjdartifactid}/Libs/{libsFile}"  # The workspaceId and sjdartifactid are the same as previous steps, the libsFile is the name of the libs file
defaultLakehouseId = '<REDACTED>'  # Replace this with the real default lakehouse ID

updateRequestBodyJson = {
    "executableFile": mainAbfssPath,
    "defaultLakehouseArtifactId": defaultLakehouseId,
    "mainClass": "",
    "additionalLakehouseIds": [],
    "retryPolicy": None,
    "commandLineArguments": "",
    "additionalLibraryUris": [libsAbfssPath],
    "language": "Python",
    "environmentArtifactId": None}

# Encode the bytes as a Base64-encoded string
base64EncodedUpdateSJDPayload = json_to_base64(updateRequestBodyJson)

# Print the Base64-encoded string
print("Base64-encoded JSON payload for SJD Update:")
print(base64EncodedUpdateSJDPayload)

# Define the API URL
updateSjdUrl = f"https://api.fabric.microsoft.com//v1/workspaces/{workspaceId}/items/{sjdartifactid}/updateDefinition"

updatePayload = base64EncodedUpdateSJDPayload
payloadType = "InlineBase64"
path = "SparkJobDefinitionV1.json"
format = "SparkJobDefinitionV1"
Type = "SparkJobDefinition"

# Define the headers with Bearer authentication
bearerToken = "<REDACTED>"  # Replace this token with the real AAD token

headers = {
    "Authorization": f"Bearer {bearerToken}", 
    "Content-Type": "application/json"  # Set the content type based on your request
}

# Define the payload data for the POST request
payload_data = {
    "displayName": "sjdCreateTest11",
    "Type": Type,
    "definition": {
        "format": format,
        "parts": [
            {
                "path": path,
                "payload": updatePayload,
                "payloadType": payloadType
            }
        ]
    }
}


# Make the POST request with Bearer authentication
response = requests.post(updateSjdUrl, json=payload_data, headers=headers)
if response.status_code == 200:
    print("Successfully updated SJD.")
else:
    print(response.json())
    print(response.status_code)

若要回顾整个过程,需要使用 Fabric REST API 和 OneLake API 来创建和更新 Spark 作业定义项。 Fabric REST API 用于创建和更新 Spark 作业定义项。 OneLake API 用于上传主定义文件和其他 lib 文件。 首先将主定义文件和其他 lib 文件上传到 OneLake。 然后在 Spark 作业定义项中设置主定义文件和其他 lib 文件的 URL 属性。