在这里,我们将介绍如何对基元使用深度、透视、颜色和其他效果。
目标: 创建 3D 对象并向其应用基本顶点照明和着色。
先决条件
我们假设你熟悉C++。 你还需要图形编程概念的基本经验。
我们还假设你已完成 快速入门:设置 DirectX 资源并显示图像 和 创建着色器和绘制基元。
完成时间: 20 分钟。
说明书
1. 定义数据立方体变量
首先,我们需要为立方体定义 SimpleCubeVertex 和 ConstantBuffer 结构。 这些结构指定多维数据集的顶点位置和颜色,以及如何查看多维数据集。 我们声明 ID3D11DepthStencilView 和 ID3D11Buffer,并使用 ComPtr 声明了一个 ConstantBuffer的实例。
struct SimpleCubeVertex
{
DirectX::XMFLOAT3 pos; // Position
DirectX::XMFLOAT3 color; // Color
};
struct ConstantBuffer
{
DirectX::XMFLOAT4X4 model;
DirectX::XMFLOAT4X4 view;
DirectX::XMFLOAT4X4 projection;
};
// This class defines the application as a whole.
ref class Direct3DTutorialFrameworkView : public IFrameworkView
{
private:
Platform::Agile<CoreWindow> m_window;
ComPtr<IDXGISwapChain1> m_swapChain;
ComPtr<ID3D11Device1> m_d3dDevice;
ComPtr<ID3D11DeviceContext1> m_d3dDeviceContext;
ComPtr<ID3D11RenderTargetView> m_renderTargetView;
ComPtr<ID3D11DepthStencilView> m_depthStencilView;
ComPtr<ID3D11Buffer> m_constantBuffer;
ConstantBuffer m_constantBufferData;
2.创建深度模板视图
除了创建呈现目标视图之外,我们还会创建深度模板视图。 深度模板视图使 Direct3D 能够有效地将离相机更近的对象渲染在较远的对象前面。 在创建深度模板缓冲区的视图之前,必须先创建深度模板缓冲区。 我们填充 D3D11_TEXTURE2D_DESC 来描述深度模具缓冲区,然后调用 ID3D11Device::CreateTexture2D 来创建深度模具缓冲区。 若要创建深度模具视图,我们将填充 D3D11_DEPTH_STENCIL_VIEW_DESC 来描述深度模具视图,并将深度模具视图说明和深度模具缓冲区传递给 ID3D11Device::CreateDepthStencilView。
// Once the render target view is created, create a depth stencil view. This
// allows Direct3D to efficiently render objects closer to the camera in front
// of objects further from the camera.
D3D11_TEXTURE2D_DESC backBufferDesc = {0};
backBuffer->GetDesc(&backBufferDesc);
D3D11_TEXTURE2D_DESC depthStencilDesc;
depthStencilDesc.Width = backBufferDesc.Width;
depthStencilDesc.Height = backBufferDesc.Height;
depthStencilDesc.MipLevels = 1;
depthStencilDesc.ArraySize = 1;
depthStencilDesc.Format = DXGI_FORMAT_D24_UNORM_S8_UINT;
depthStencilDesc.SampleDesc.Count = 1;
depthStencilDesc.SampleDesc.Quality = 0;
depthStencilDesc.Usage = D3D11_USAGE_DEFAULT;
depthStencilDesc.BindFlags = D3D11_BIND_DEPTH_STENCIL;
depthStencilDesc.CPUAccessFlags = 0;
depthStencilDesc.MiscFlags = 0;
ComPtr<ID3D11Texture2D> depthStencil;
DX::ThrowIfFailed(
m_d3dDevice->CreateTexture2D(
&depthStencilDesc,
nullptr,
&depthStencil
)
);
D3D11_DEPTH_STENCIL_VIEW_DESC depthStencilViewDesc;
depthStencilViewDesc.Format = depthStencilDesc.Format;
depthStencilViewDesc.ViewDimension = D3D11_DSV_DIMENSION_TEXTURE2D;
depthStencilViewDesc.Flags = 0;
depthStencilViewDesc.Texture2D.MipSlice = 0;
DX::ThrowIfFailed(
m_d3dDevice->CreateDepthStencilView(
depthStencil.Get(),
&depthStencilViewDesc,
&m_depthStencilView
)
);
3. 用窗口来更新视角
我们将根据窗口尺寸更新常量缓冲区的透视投影参数。 我们将参数设定为视场为 70 度,深度范围为 0.01 到 100。
// Finally, update the constant buffer perspective projection parameters
// to account for the size of the application window. In this sample,
// the parameters are fixed to a 70-degree field of view, with a depth
// range of 0.01 to 100. For a generalized camera class, see Lesson 5.
float xScale = 1.42814801f;
float yScale = 1.42814801f;
if (backBufferDesc.Width > backBufferDesc.Height)
{
xScale = yScale *
static_cast<float>(backBufferDesc.Height) /
static_cast<float>(backBufferDesc.Width);
}
else
{
yScale = xScale *
static_cast<float>(backBufferDesc.Width) /
static_cast<float>(backBufferDesc.Height);
}
m_constantBufferData.projection = DirectX::XMFLOAT4X4(
xScale, 0.0f, 0.0f, 0.0f,
0.0f, yScale, 0.0f, 0.0f,
0.0f, 0.0f, -1.0f, -0.01f,
0.0f, 0.0f, -1.0f, 0.0f
);
4. 使用颜色元素创建顶点和像素着色器
在此应用中,我们将创建比上一教程中所述的更复杂的顶点和像素着色器,创建着色器和绘制基元。 应用的顶点着色器将每个顶点位置转换为投影空间,并将顶点颜色传递到像素着色器。
描述顶点着色器代码布局的 D3D11_INPUT_ELEMENT_DESC 结构的数组有两个布局元素:一个元素定义顶点位置,另一个元素定义颜色。
我们创建用于定义环绕旋转立方体的顶点、索引和常量缓冲区。
定义绕轨道运行的立方体
- 首先,我们定义立方体。 除了位置之外,我们还为每个顶点分配一种颜色。 这样,像素着色器就可以以不同的方式对每个人脸进行着色,以便区分人脸。
- 接下来,我们使用立方体定义描述顶点和索引缓冲区(D3D11_BUFFER_DESC 和 D3D11_SUBRESOURCE_DATA)。 为每个缓冲区调用 ID3D11Device::CreateBuffer 一次。
- 接下来,我们将创建一个常量缓冲区(D3D11_BUFFER_DESC),用于将模型、视图和投影矩阵传递给顶点着色器。 我们稍后可以使用常量缓冲区旋转立方体,并对其应用透视投影。 调用 ID3D11Device::CreateBuffer 来创建常量缓冲区。
- 接下来,我们指定对应于相机位置 X = 0、Y = 1、Z = 2 的视图转换。
- 最后,我们声明一个 度 变量,我们将用它来通过旋转立方体的每帧来制作动画。
auto loadVSTask = DX::ReadDataAsync(L"SimpleVertexShader.cso");
auto loadPSTask = DX::ReadDataAsync(L"SimplePixelShader.cso");
auto createVSTask = loadVSTask.then([this](const std::vector<byte>& vertexShaderBytecode) {
ComPtr<ID3D11VertexShader> vertexShader;
DX::ThrowIfFailed(
m_d3dDevice->CreateVertexShader(
vertexShaderBytecode->Data,
vertexShaderBytecode->Length,
nullptr,
&vertexShader
)
);
// Create an input layout that matches the layout defined in the vertex shader code.
// For this lesson, this is simply a DirectX::XMFLOAT3 vector defining the vertex position, and
// a DirectX::XMFLOAT3 vector defining the vertex color.
const D3D11_INPUT_ELEMENT_DESC basicVertexLayoutDesc[] =
{
{ "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0 },
{ "COLOR", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 12, D3D11_INPUT_PER_VERTEX_DATA, 0 },
};
ComPtr<ID3D11InputLayout> inputLayout;
DX::ThrowIfFailed(
m_d3dDevice->CreateInputLayout(
basicVertexLayoutDesc,
ARRAYSIZE(basicVertexLayoutDesc),
vertexShaderBytecode->Data,
vertexShaderBytecode->Length,
&inputLayout
)
);
});
// Load the raw pixel shader bytecode from disk and create a pixel shader with it.
auto createPSTask = loadPSTask.then([this](const std::vector<byte>& pixelShaderBytecode) {
ComPtr<ID3D11PixelShader> pixelShader;
DX::ThrowIfFailed(
m_d3dDevice->CreatePixelShader(
pixelShaderBytecode->Data,
pixelShaderBytecode->Length,
nullptr,
&pixelShader
)
);
});
// Create vertex and index buffers that define a simple unit cube.
auto createCubeTask = (createPSTask && createVSTask).then([this] () {
// In the array below, which will be used to initialize the cube vertex buffers,
// each vertex is assigned a color in addition to a position. This will allow
// the pixel shader to color each face differently, enabling them to be distinguished.
SimpleCubeVertex cubeVertices[] =
{
{ float3(-0.5f, 0.5f, -0.5f), float3(0.0f, 1.0f, 0.0f) }, // +Y (top face)
{ float3( 0.5f, 0.5f, -0.5f), float3(1.0f, 1.0f, 0.0f) },
{ float3( 0.5f, 0.5f, 0.5f), float3(1.0f, 1.0f, 1.0f) },
{ float3(-0.5f, 0.5f, 0.5f), float3(0.0f, 1.0f, 1.0f) },
{ float3(-0.5f, -0.5f, 0.5f), float3(0.0f, 0.0f, 1.0f) }, // -Y (bottom face)
{ float3( 0.5f, -0.5f, 0.5f), float3(1.0f, 0.0f, 1.0f) },
{ float3( 0.5f, -0.5f, -0.5f), float3(1.0f, 0.0f, 0.0f) },
{ float3(-0.5f, -0.5f, -0.5f), float3(0.0f, 0.0f, 0.0f) },
};
unsigned short cubeIndices[] =
{
0, 1, 2,
0, 2, 3,
4, 5, 6,
4, 6, 7,
3, 2, 5,
3, 5, 4,
2, 1, 6,
2, 6, 5,
1, 7, 6,
1, 0, 7,
0, 3, 4,
0, 4, 7
};
D3D11_BUFFER_DESC vertexBufferDesc = {0};
vertexBufferDesc.ByteWidth = sizeof(SimpleCubeVertex) * ARRAYSIZE(cubeVertices);
vertexBufferDesc.Usage = D3D11_USAGE_DEFAULT;
vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER;
vertexBufferDesc.CPUAccessFlags = 0;
vertexBufferDesc.MiscFlags = 0;
vertexBufferDesc.StructureByteStride = 0;
D3D11_SUBRESOURCE_DATA vertexBufferData;
vertexBufferData.pSysMem = cubeVertices;
vertexBufferData.SysMemPitch = 0;
vertexBufferData.SysMemSlicePitch = 0;
ComPtr<ID3D11Buffer> vertexBuffer;
DX::ThrowIfFailed(
m_d3dDevice->CreateBuffer(
&vertexBufferDesc,
&vertexBufferData,
&vertexBuffer
)
);
D3D11_BUFFER_DESC indexBufferDesc;
indexBufferDesc.ByteWidth = sizeof(unsigned short) * ARRAYSIZE(cubeIndices);
indexBufferDesc.Usage = D3D11_USAGE_DEFAULT;
indexBufferDesc.BindFlags = D3D11_BIND_INDEX_BUFFER;
indexBufferDesc.CPUAccessFlags = 0;
indexBufferDesc.MiscFlags = 0;
indexBufferDesc.StructureByteStride = 0;
D3D11_SUBRESOURCE_DATA indexBufferData;
indexBufferData.pSysMem = cubeIndices;
indexBufferData.SysMemPitch = 0;
indexBufferData.SysMemSlicePitch = 0;
ComPtr<ID3D11Buffer> indexBuffer;
DX::ThrowIfFailed(
m_d3dDevice->CreateBuffer(
&indexBufferDesc,
&indexBufferData,
&indexBuffer
)
);
// Create a constant buffer for passing model, view, and projection matrices
// to the vertex shader. This will allow us to rotate the cube and apply
// a perspective projection to it.
D3D11_BUFFER_DESC constantBufferDesc = {0};
constantBufferDesc.ByteWidth = sizeof(m_constantBufferData);
constantBufferDesc.Usage = D3D11_USAGE_DEFAULT;
constantBufferDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
constantBufferDesc.CPUAccessFlags = 0;
constantBufferDesc.MiscFlags = 0;
constantBufferDesc.StructureByteStride = 0;
DX::ThrowIfFailed(
m_d3dDevice->CreateBuffer(
&constantBufferDesc,
nullptr,
&m_constantBuffer
)
);
// Specify the view transform corresponding to a camera position of
// X = 0, Y = 1, Z = 2. For a generalized camera class, see Lesson 5.
m_constantBufferData.view = DirectX::XMFLOAT4X4(
-1.00000000f, 0.00000000f, 0.00000000f, 0.00000000f,
0.00000000f, 0.89442718f, 0.44721359f, 0.00000000f,
0.00000000f, 0.44721359f, -0.89442718f, -2.23606800f,
0.00000000f, 0.00000000f, 0.00000000f, 1.00000000f
);
});
// This value will be used to animate the cube by rotating it every frame.
float degree = 0.0f;
5. 旋转和绘制立方体并呈现渲染后的图像
我们进入一个无休止的循环来持续呈现和显示场景。 我们调用 rotationY 内联函数(在 BasicMath.h 中),为立方体的模型矩阵设置一个值,以便实现围绕 Y 轴的旋转。 然后,调用 ID3D11DeviceContext::UpdateSubresource 来更新常量缓冲区并旋转多维数据集模型。 调用 ID3D11DeviceContext::OMSetRenderTargets 将呈现目标指定为输出目标。 在此 OMSetRenderTargets 调用中,我们将传入深度模板视图。 调用 ID3D11DeviceContext::ClearRenderTargetView 以清除纯蓝色的呈现目标,并调用 ID3D11DeviceContext::ClearDepthStencilView 清除深度缓冲区。
在无休止的循环中,我们还在蓝色图面上绘制立方体。
绘制立方体
- 首先,调用 ID3D11DeviceContext::IASetInputLayout 来描述如何将顶点缓冲区数据流式传输到输入汇编程序阶段。
- 接下来,调用 ID3D11DeviceContext::IASetVertexBuffers 和 ID3D11DeviceContext::IASetIndexBuffer 将顶点和索引缓冲区绑定到输入汇编程序阶段。
- 接下来,我们调用 ID3D11DeviceContext::IASetPrimitiveTopology,并使用 D3D11_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP 值,指示输入汇编器阶段将顶点数据解释为三角形带。
- 接下来,我们调用 ID3D11DeviceContext::VSSetShader,以使用顶点着色器代码初始化顶点着色器阶段,并调用 ID3D11DeviceContext::PSSetShader,以使用像素着色器代码初始化像素着色器阶段。
- 接下来,调用 ID3D11DeviceContext::VSSetConstantBuffers 来设置顶点着色器管道阶段使用的常量缓冲区。
- 最后,调用 ID3D11DeviceContext::DrawIndexed 绘制立方体并将其提交到渲染管线。
我们调用 IDXGISwapChain::Present 将渲染的图像显示到窗口。
// Update the constant buffer to rotate the cube model.
m_constantBufferData.model = XMMatrixRotationY(-degree);
degree += 1.0f;
m_d3dDeviceContext->UpdateSubresource(
m_constantBuffer.Get(),
0,
nullptr,
&m_constantBufferData,
0,
0
);
// Specify the render target and depth stencil we created as the output target.
m_d3dDeviceContext->OMSetRenderTargets(
1,
m_renderTargetView.GetAddressOf(),
m_depthStencilView.Get()
);
// Clear the render target to a solid color, and reset the depth stencil.
const float clearColor[4] = { 0.071f, 0.04f, 0.561f, 1.0f };
m_d3dDeviceContext->ClearRenderTargetView(
m_renderTargetView.Get(),
clearColor
);
m_d3dDeviceContext->ClearDepthStencilView(
m_depthStencilView.Get(),
D3D11_CLEAR_DEPTH,
1.0f,
0
);
m_d3dDeviceContext->IASetInputLayout(inputLayout.Get());
// Set the vertex and index buffers, and specify the way they define geometry.
UINT stride = sizeof(SimpleCubeVertex);
UINT offset = 0;
m_d3dDeviceContext->IASetVertexBuffers(
0,
1,
vertexBuffer.GetAddressOf(),
&stride,
&offset
);
m_d3dDeviceContext->IASetIndexBuffer(
indexBuffer.Get(),
DXGI_FORMAT_R16_UINT,
0
);
m_d3dDeviceContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
// Set the vertex and pixel shader stage state.
m_d3dDeviceContext->VSSetShader(
vertexShader.Get(),
nullptr,
0
);
m_d3dDeviceContext->VSSetConstantBuffers(
0,
1,
m_constantBuffer.GetAddressOf()
);
m_d3dDeviceContext->PSSetShader(
pixelShader.Get(),
nullptr,
0
);
// Draw the cube.
m_d3dDeviceContext->DrawIndexed(
ARRAYSIZE(cubeIndices),
0,
0
);
// Present the rendered image to the window. Because the maximum frame latency is set to 1,
// the render loop will generally be throttled to the screen refresh rate, typically around
// 60 Hz, by sleeping the application on Present until the screen is refreshed.
DX::ThrowIfFailed(
m_swapChain->Present(1, 0)
);
摘要和后续步骤
我们使用深度、透视、颜色和其他对基元的影响。
接下来,我们将纹理应用于基元。