将深度和效果应用于基本图形

在这里,我们将介绍如何对基元使用深度、透视、颜色和其他效果。

目标: 创建 3D 对象并向其应用基本顶点照明和着色。

先决条件

我们假设你熟悉C++。 你还需要图形编程概念的基本经验。

我们还假设你已完成 快速入门:设置 DirectX 资源并显示图像创建着色器和绘制基元

完成时间: 20 分钟。

说明书

1. 定义数据立方体变量

首先,我们需要为立方体定义 SimpleCubeVertexConstantBuffer 结构。 这些结构指定多维数据集的顶点位置和颜色,以及如何查看多维数据集。 我们声明 ID3D11DepthStencilViewID3D11Buffer,并使用 ComPtr 声明了一个 ConstantBuffer的实例。

struct SimpleCubeVertex
{
    DirectX::XMFLOAT3 pos;   // Position
    DirectX::XMFLOAT3 color; // Color
};

struct ConstantBuffer
{
    DirectX::XMFLOAT4X4 model;
    DirectX::XMFLOAT4X4 view;
    DirectX::XMFLOAT4X4 projection;
};

// This class defines the application as a whole.
ref class Direct3DTutorialFrameworkView : public IFrameworkView
{
private:
    Platform::Agile<CoreWindow> m_window;
    ComPtr<IDXGISwapChain1> m_swapChain;
    ComPtr<ID3D11Device1> m_d3dDevice;
    ComPtr<ID3D11DeviceContext1> m_d3dDeviceContext;
    ComPtr<ID3D11RenderTargetView> m_renderTargetView;
    ComPtr<ID3D11DepthStencilView> m_depthStencilView;
    ComPtr<ID3D11Buffer> m_constantBuffer;
    ConstantBuffer m_constantBufferData;

2.创建深度模板视图

除了创建呈现目标视图之外,我们还会创建深度模板视图。 深度模板视图使 Direct3D 能够有效地将离相机更近的对象渲染在较远的对象前面。 在创建深度模板缓冲区的视图之前,必须先创建深度模板缓冲区。 我们填充 D3D11_TEXTURE2D_DESC 来描述深度模具缓冲区,然后调用 ID3D11Device::CreateTexture2D 来创建深度模具缓冲区。 若要创建深度模具视图,我们将填充 D3D11_DEPTH_STENCIL_VIEW_DESC 来描述深度模具视图,并将深度模具视图说明和深度模具缓冲区传递给 ID3D11Device::CreateDepthStencilView

        // Once the render target view is created, create a depth stencil view.  This
        // allows Direct3D to efficiently render objects closer to the camera in front
        // of objects further from the camera.

        D3D11_TEXTURE2D_DESC backBufferDesc = {0};
        backBuffer->GetDesc(&backBufferDesc);

        D3D11_TEXTURE2D_DESC depthStencilDesc;
        depthStencilDesc.Width = backBufferDesc.Width;
        depthStencilDesc.Height = backBufferDesc.Height;
        depthStencilDesc.MipLevels = 1;
        depthStencilDesc.ArraySize = 1;
        depthStencilDesc.Format = DXGI_FORMAT_D24_UNORM_S8_UINT;
        depthStencilDesc.SampleDesc.Count = 1;
        depthStencilDesc.SampleDesc.Quality = 0;
        depthStencilDesc.Usage = D3D11_USAGE_DEFAULT;
        depthStencilDesc.BindFlags = D3D11_BIND_DEPTH_STENCIL;
        depthStencilDesc.CPUAccessFlags = 0;
        depthStencilDesc.MiscFlags = 0;
        ComPtr<ID3D11Texture2D> depthStencil;
        DX::ThrowIfFailed(
            m_d3dDevice->CreateTexture2D(
                &depthStencilDesc,
                nullptr,
                &depthStencil
                )
            );

        D3D11_DEPTH_STENCIL_VIEW_DESC depthStencilViewDesc;
        depthStencilViewDesc.Format = depthStencilDesc.Format;
        depthStencilViewDesc.ViewDimension = D3D11_DSV_DIMENSION_TEXTURE2D;
        depthStencilViewDesc.Flags = 0;
        depthStencilViewDesc.Texture2D.MipSlice = 0;
        DX::ThrowIfFailed(
            m_d3dDevice->CreateDepthStencilView(
                depthStencil.Get(),
                &depthStencilViewDesc,
                &m_depthStencilView
                )
            );

3. 用窗口来更新视角

我们将根据窗口尺寸更新常量缓冲区的透视投影参数。 我们将参数设定为视场为 70 度,深度范围为 0.01 到 100。

        // Finally, update the constant buffer perspective projection parameters
        // to account for the size of the application window.  In this sample,
        // the parameters are fixed to a 70-degree field of view, with a depth
        // range of 0.01 to 100.  For a generalized camera class, see Lesson 5.

        float xScale = 1.42814801f;
        float yScale = 1.42814801f;
        if (backBufferDesc.Width > backBufferDesc.Height)
        {
            xScale = yScale *
                static_cast<float>(backBufferDesc.Height) /
                static_cast<float>(backBufferDesc.Width);
        }
        else
        {
            yScale = xScale *
                static_cast<float>(backBufferDesc.Width) /
                static_cast<float>(backBufferDesc.Height);
        }

        m_constantBufferData.projection = DirectX::XMFLOAT4X4(
            xScale, 0.0f,    0.0f,  0.0f,
            0.0f,   yScale,  0.0f,  0.0f,
            0.0f,   0.0f,   -1.0f, -0.01f,
            0.0f,   0.0f,   -1.0f,  0.0f
            );

4. 使用颜色元素创建顶点和像素着色器

在此应用中,我们将创建比上一教程中所述的更复杂的顶点和像素着色器,创建着色器和绘制基元。 应用的顶点着色器将每个顶点位置转换为投影空间,并将顶点颜色传递到像素着色器。

描述顶点着色器代码布局的 D3D11_INPUT_ELEMENT_DESC 结构的数组有两个布局元素:一个元素定义顶点位置,另一个元素定义颜色。

我们创建用于定义环绕旋转立方体的顶点、索引和常量缓冲区。

定义绕轨道运行的立方体

  1. 首先,我们定义立方体。 除了位置之外,我们还为每个顶点分配一种颜色。 这样,像素着色器就可以以不同的方式对每个人脸进行着色,以便区分人脸。
  2. 接下来,我们使用立方体定义描述顶点和索引缓冲区(D3D11_BUFFER_DESCD3D11_SUBRESOURCE_DATA)。 为每个缓冲区调用 ID3D11Device::CreateBuffer 一次。
  3. 接下来,我们将创建一个常量缓冲区(D3D11_BUFFER_DESC),用于将模型、视图和投影矩阵传递给顶点着色器。 我们稍后可以使用常量缓冲区旋转立方体,并对其应用透视投影。 调用 ID3D11Device::CreateBuffer 来创建常量缓冲区。
  4. 接下来,我们指定对应于相机位置 X = 0、Y = 1、Z = 2 的视图转换。
  5. 最后,我们声明一个 变量,我们将用它来通过旋转立方体的每帧来制作动画。
        
        auto loadVSTask = DX::ReadDataAsync(L"SimpleVertexShader.cso");
        auto loadPSTask = DX::ReadDataAsync(L"SimplePixelShader.cso");
        
        
        auto createVSTask = loadVSTask.then([this](const std::vector<byte>& vertexShaderBytecode) {        
          ComPtr<ID3D11VertexShader> vertexShader;
          DX::ThrowIfFailed(
              m_d3dDevice->CreateVertexShader(
                  vertexShaderBytecode->Data,
                  vertexShaderBytecode->Length,
                  nullptr,
                  &vertexShader
                  )
              );

          // Create an input layout that matches the layout defined in the vertex shader code.
          // For this lesson, this is simply a DirectX::XMFLOAT3 vector defining the vertex position, and
          // a DirectX::XMFLOAT3 vector defining the vertex color.
          const D3D11_INPUT_ELEMENT_DESC basicVertexLayoutDesc[] =
          {
              { "POSITION", 0, DXGI_FORMAT_R32G32B32_FLOAT, 0,  0, D3D11_INPUT_PER_VERTEX_DATA, 0 },
              { "COLOR",    0, DXGI_FORMAT_R32G32B32_FLOAT, 0, 12, D3D11_INPUT_PER_VERTEX_DATA, 0 },
          };

          ComPtr<ID3D11InputLayout> inputLayout;
          DX::ThrowIfFailed(
              m_d3dDevice->CreateInputLayout(
                  basicVertexLayoutDesc,
                  ARRAYSIZE(basicVertexLayoutDesc),
                  vertexShaderBytecode->Data,
                  vertexShaderBytecode->Length,
                  &inputLayout
                  )
              );
        });
        
        
        // Load the raw pixel shader bytecode from disk and create a pixel shader with it.
        auto createPSTask = loadPSTask.then([this](const std::vector<byte>& pixelShaderBytecode) {
          ComPtr<ID3D11PixelShader> pixelShader;
          DX::ThrowIfFailed(
              m_d3dDevice->CreatePixelShader(
                  pixelShaderBytecode->Data,
                  pixelShaderBytecode->Length,
                  nullptr,
                  &pixelShader
                  )
              );
        });
        
        
        // Create vertex and index buffers that define a simple unit cube.
        auto createCubeTask = (createPSTask && createVSTask).then([this] () {

          // In the array below, which will be used to initialize the cube vertex buffers,
          // each vertex is assigned a color in addition to a position.  This will allow
          // the pixel shader to color each face differently, enabling them to be distinguished.
          SimpleCubeVertex cubeVertices[] =
          {
              { float3(-0.5f, 0.5f, -0.5f), float3(0.0f, 1.0f, 0.0f) }, // +Y (top face)
              { float3( 0.5f, 0.5f, -0.5f), float3(1.0f, 1.0f, 0.0f) },
              { float3( 0.5f, 0.5f,  0.5f), float3(1.0f, 1.0f, 1.0f) },
              { float3(-0.5f, 0.5f,  0.5f), float3(0.0f, 1.0f, 1.0f) },

              { float3(-0.5f, -0.5f,  0.5f), float3(0.0f, 0.0f, 1.0f) }, // -Y (bottom face)
              { float3( 0.5f, -0.5f,  0.5f), float3(1.0f, 0.0f, 1.0f) },
              { float3( 0.5f, -0.5f, -0.5f), float3(1.0f, 0.0f, 0.0f) },
              { float3(-0.5f, -0.5f, -0.5f), float3(0.0f, 0.0f, 0.0f) },
          };

          unsigned short cubeIndices[] =
          {
              0, 1, 2,
              0, 2, 3,

              4, 5, 6,
              4, 6, 7,

              3, 2, 5,
              3, 5, 4,

              2, 1, 6,
              2, 6, 5,

              1, 7, 6,
              1, 0, 7,

              0, 3, 4,
              0, 4, 7
          };

          D3D11_BUFFER_DESC vertexBufferDesc = {0};
          vertexBufferDesc.ByteWidth = sizeof(SimpleCubeVertex) * ARRAYSIZE(cubeVertices);
          vertexBufferDesc.Usage = D3D11_USAGE_DEFAULT;
          vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER;
          vertexBufferDesc.CPUAccessFlags = 0;
          vertexBufferDesc.MiscFlags = 0;
          vertexBufferDesc.StructureByteStride = 0;

          D3D11_SUBRESOURCE_DATA vertexBufferData;
          vertexBufferData.pSysMem = cubeVertices;
          vertexBufferData.SysMemPitch = 0;
          vertexBufferData.SysMemSlicePitch = 0;

          ComPtr<ID3D11Buffer> vertexBuffer;
          DX::ThrowIfFailed(
              m_d3dDevice->CreateBuffer(
                  &vertexBufferDesc,
                  &vertexBufferData,
                  &vertexBuffer
                  )
              );

          D3D11_BUFFER_DESC indexBufferDesc;
          indexBufferDesc.ByteWidth = sizeof(unsigned short) * ARRAYSIZE(cubeIndices);
          indexBufferDesc.Usage = D3D11_USAGE_DEFAULT;
          indexBufferDesc.BindFlags = D3D11_BIND_INDEX_BUFFER;
          indexBufferDesc.CPUAccessFlags = 0;
          indexBufferDesc.MiscFlags = 0;
          indexBufferDesc.StructureByteStride = 0;

          D3D11_SUBRESOURCE_DATA indexBufferData;
          indexBufferData.pSysMem = cubeIndices;
          indexBufferData.SysMemPitch = 0;
          indexBufferData.SysMemSlicePitch = 0;

          ComPtr<ID3D11Buffer> indexBuffer;
          DX::ThrowIfFailed(
              m_d3dDevice->CreateBuffer(
                  &indexBufferDesc,
                  &indexBufferData,
                  &indexBuffer
                  )
              );


          // Create a constant buffer for passing model, view, and projection matrices
          // to the vertex shader.  This will allow us to rotate the cube and apply
          // a perspective projection to it.

          D3D11_BUFFER_DESC constantBufferDesc = {0};
          constantBufferDesc.ByteWidth = sizeof(m_constantBufferData);
          constantBufferDesc.Usage = D3D11_USAGE_DEFAULT;
          constantBufferDesc.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
          constantBufferDesc.CPUAccessFlags = 0;
          constantBufferDesc.MiscFlags = 0;
          constantBufferDesc.StructureByteStride = 0;
          DX::ThrowIfFailed(
              m_d3dDevice->CreateBuffer(
                  &constantBufferDesc,
                  nullptr,
                  &m_constantBuffer
                  )
              );

          // Specify the view transform corresponding to a camera position of
          // X = 0, Y = 1, Z = 2.  For a generalized camera class, see Lesson 5.

          m_constantBufferData.view = DirectX::XMFLOAT4X4(
              -1.00000000f, 0.00000000f,  0.00000000f,  0.00000000f,
               0.00000000f, 0.89442718f,  0.44721359f,  0.00000000f,
               0.00000000f, 0.44721359f, -0.89442718f, -2.23606800f,
               0.00000000f, 0.00000000f,  0.00000000f,  1.00000000f
              );

        });
        
        // This value will be used to animate the cube by rotating it every frame.
        float degree = 0.0f;
        

5. 旋转和绘制立方体并呈现渲染后的图像

我们进入一个无休止的循环来持续呈现和显示场景。 我们调用 rotationY 内联函数(在 BasicMath.h 中),为立方体的模型矩阵设置一个值,以便实现围绕 Y 轴的旋转。 然后,调用 ID3D11DeviceContext::UpdateSubresource 来更新常量缓冲区并旋转多维数据集模型。 调用 ID3D11DeviceContext::OMSetRenderTargets 将呈现目标指定为输出目标。 在此 OMSetRenderTargets 调用中,我们将传入深度模板视图。 调用 ID3D11DeviceContext::ClearRenderTargetView 以清除纯蓝色的呈现目标,并调用 ID3D11DeviceContext::ClearDepthStencilView 清除深度缓冲区。

在无休止的循环中,我们还在蓝色图面上绘制立方体。

绘制立方体

  1. 首先,调用 ID3D11DeviceContext::IASetInputLayout 来描述如何将顶点缓冲区数据流式传输到输入汇编程序阶段。
  2. 接下来,调用 ID3D11DeviceContext::IASetVertexBuffersID3D11DeviceContext::IASetIndexBuffer 将顶点和索引缓冲区绑定到输入汇编程序阶段。
  3. 接下来,我们调用 ID3D11DeviceContext::IASetPrimitiveTopology,并使用 D3D11_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP 值,指示输入汇编器阶段将顶点数据解释为三角形带。
  4. 接下来,我们调用 ID3D11DeviceContext::VSSetShader,以使用顶点着色器代码初始化顶点着色器阶段,并调用 ID3D11DeviceContext::PSSetShader,以使用像素着色器代码初始化像素着色器阶段。
  5. 接下来,调用 ID3D11DeviceContext::VSSetConstantBuffers 来设置顶点着色器管道阶段使用的常量缓冲区。
  6. 最后,调用 ID3D11DeviceContext::DrawIndexed 绘制立方体并将其提交到渲染管线。

我们调用 IDXGISwapChain::Present 将渲染的图像显示到窗口。

            // Update the constant buffer to rotate the cube model.
            m_constantBufferData.model = XMMatrixRotationY(-degree);
            degree += 1.0f;

            m_d3dDeviceContext->UpdateSubresource(
                m_constantBuffer.Get(),
                0,
                nullptr,
                &m_constantBufferData,
                0,
                0
                );

            // Specify the render target and depth stencil we created as the output target.
            m_d3dDeviceContext->OMSetRenderTargets(
                1,
                m_renderTargetView.GetAddressOf(),
                m_depthStencilView.Get()
                );

            // Clear the render target to a solid color, and reset the depth stencil.
            const float clearColor[4] = { 0.071f, 0.04f, 0.561f, 1.0f };
            m_d3dDeviceContext->ClearRenderTargetView(
                m_renderTargetView.Get(),
                clearColor
                );

            m_d3dDeviceContext->ClearDepthStencilView(
                m_depthStencilView.Get(),
                D3D11_CLEAR_DEPTH,
                1.0f,
                0
                );

            m_d3dDeviceContext->IASetInputLayout(inputLayout.Get());

            // Set the vertex and index buffers, and specify the way they define geometry.
            UINT stride = sizeof(SimpleCubeVertex);
            UINT offset = 0;
            m_d3dDeviceContext->IASetVertexBuffers(
                0,
                1,
                vertexBuffer.GetAddressOf(),
                &stride,
                &offset
                );

            m_d3dDeviceContext->IASetIndexBuffer(
                indexBuffer.Get(),
                DXGI_FORMAT_R16_UINT,
                0
                );

            m_d3dDeviceContext->IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST);

            // Set the vertex and pixel shader stage state.
            m_d3dDeviceContext->VSSetShader(
                vertexShader.Get(),
                nullptr,
                0
                );

            m_d3dDeviceContext->VSSetConstantBuffers(
                0,
                1,
                m_constantBuffer.GetAddressOf()
                );

            m_d3dDeviceContext->PSSetShader(
                pixelShader.Get(),
                nullptr,
                0
                );

            // Draw the cube.
            m_d3dDeviceContext->DrawIndexed(
                ARRAYSIZE(cubeIndices),
                0,
                0
                );

            // Present the rendered image to the window.  Because the maximum frame latency is set to 1,
            // the render loop will generally be throttled to the screen refresh rate, typically around
            // 60 Hz, by sleeping the application on Present until the screen is refreshed.
            DX::ThrowIfFailed(
                m_swapChain->Present(1, 0)
                );

摘要和后续步骤

我们使用深度、透视、颜色和其他对基元的影响。

接下来,我们将纹理应用于基元。

将纹理应用于基元