Compartir a través de


Capacidades de IA generativa en Test Engine (vista previa) Power Apps

Nota

Las características en vista previa no se han diseñado para un uso de producción y pueden tener una funcionalidad restringida. Estas características están disponibles antes del lanzamiento oficial, para que los clientes puedan obtener acceso anticipado y proporcionar comentarios.

Power Apps Test Engine ofrece capacidades integrales de inteligencia artificial generativa que abarcan todo el ciclo de vida de las pruebas. Esta página proporciona una descripción general de cómo la IA generativa puede mejorar su experiencia de prueba, desde la creación de la prueba hasta la ejecución y validación.

Las funciones de inteligencia artificial generativa de Test Engine abordan tres áreas clave del proceso de prueba:

Capacidad de IA generativa Description
Creación de pruebas generativas asistidas por IA Cree pruebas rápidamente utilizando GitHub Copilot y otros modelos de lenguaje grandes (LLM) o modelos de lenguaje pequeños (SLM)
Servidor de protocolo de contexto de modelo Análisis determinista y generación de código con MCP
Pruebas de IA no deterministas Pruebe aplicaciones impulsadas por IA con técnicas de validación especiales

Creación de pruebas generativas asistidas por IA

La creación de planes de pruebas completos puede llevar mucho tiempo, especialmente para aplicaciones complejas. Test Engine admite la creación de contenido generativo asistida por IA a través de:

  • GitHub Copilot Integración: Genere plantillas de prueba, pasos de prueba y afirmaciones basadas en el código de su aplicación.
  • Creación de pruebas en lenguaje natural: describa los escenarios de prueba en un lenguaje sencillo y tradúzcalos en pruebas ejecutables.
  • Generación de pruebas basadas en muestras: haga referencia a muestras existentes para crear pruebas contextualmente relevantes

Este enfoque ayuda a los autores de pruebas a centrarse en la lógica empresarial y las reglas de validación en lugar de en la sintaxis de pruebas y el código repetitivo.

Implementación del servidor del Protocolo de Contexto de Modelo

Power Apps Test Engine incluye una implementación de servidor de Protocolo de contexto de modelo (MCP) que proporciona un análisis determinista de sus aplicaciones y genera recomendaciones de prueba.

El servidor MCP:

  • Analiza la estructura de la aplicación para identificar componentes que se puedan probar.
  • Genera patrones de prueba basados en tipos de control y relaciones
  • Proporciona recomendaciones de código contextual
  • Se integra con clientes MCP como Visual Studio y GitHub Copilot
  • Utiliza el Diseñador de planes para organizar y priorizar los esfuerzos de prueba
  • Incorpora elementos de definición de solución y esquemas de datos para realizar pruebas integrales.
  • Utiliza metadatos de su solución para generar pruebas contextualmente relevantes

Al combinar el análisis determinista con capacidades de IA generativa, este enfoque le ofrece una generación de pruebas más confiable y precisa en comparación con los enfoques generativos puros por sí solos.

Prueba de las capacidades de la IA no determinista

Al probar aplicaciones que utilizan capacidades de IA como componentes o modelos de Transformador Generativo Preentrenado (GPT), se necesita tener especial consideración para manejar salidas no deterministas. AI Builder

El motor de pruebas proporciona:

  • La Preview.AIExecutePrompt función: ejecutar indicaciones de IA con entradas controladas y validar salidas
  • Validación basada en tolerancia: verificar que los resultados de la IA cumplan con las expectativas dentro de umbrales aceptables
  • Validación de respuestas estructuradas: Analizar y validar contenido complejo generado por IA.
  • Validación basada en planes: utilice las definiciones del Diseñador de planes para validar los resultados de la IA según los criterios esperados.

Estas capacidades garantizan que pueda crear pruebas confiables y repetibles incluso cuando trabaje con sistemas de IA inherentemente variables.

Cómo elegir el enfoque de IA generativa adecuado

Para obtener resultados óptimos, tenga en cuenta estas pautas:

Si quieres... Considere utilizar...
Genere rápidamente pruebas para una nueva aplicación Creación generativa asistida por IA con GitHub Copilot
Obtenga un análisis preciso y determinista de los componentes comprobables Servidor de protocolo del contexto del modelo
Combine el análisis determinista con capacidades generativas MCP con un cliente LLM compatible
Pruebe aplicaciones impulsadas por IA con resultados variables Pruebas de IA no deterministas con Preview.AIExecutePrompt
Estructura tus esfuerzos de prueba según los requisitos del negocio Plan Designer con integración con servidor MCP
Generar pruebas utilizando metadatos de la solución y esquemas de datos Servidor MCP con escaneo de definición de solución

Creación de pruebas asistida por IA con GitHub Copilot
Uso del servidor de Protocolo de Contexto de Modelo con el Motor de Pruebas
Prueba de componentes de IA no deterministas
Explorar el catálogo de muestras de Test Engine
Pruebe el motor de pruebas power-fx-functions
Utilice el Diseñador de planes