Compartilhar via


AutoMLRun Classe

Representa uma execução de experimento de ML automatizado no Azure Machine Learning.

A classe AutoMLRun pode ser usada para gerenciar uma execução, verificar o status da execução e recuperar detalhes de execução depois que uma execução AutoML é enviada. Para obter mais informações sobre como trabalhar com execuções de experimento, consulte a Run classe.

Inicializar uma execução de AutoML.

Construtor

AutoMLRun(experiment, run_id, **kwargs)

Parâmetros

Nome Description
experiment
Obrigatório

O experimento associado à execução.

run_id
Obrigatório
str

A ID da execução.

experiment
Obrigatório

O experimento associado à execução.

run_id
Obrigatório
str

A ID da execução.

Comentários

Um objeto AutoMLRun é retornado quando você usa o submit método de um experimento.

Para recuperar uma execução que já foi iniciada, use o seguinte código:


   from azureml.train.automl.run import AutoMLRun
   ws = Workspace.from_config()
   experiment = ws.experiments['my-experiment-name']
   automl_run = AutoMLRun(experiment, run_id = 'AutoML_9fe201fe-89fd-41cc-905f-2f41a5a98883')

Métodos

cancel

Cancelar uma execução de AutoML.

Retornar True se a execução do AutoML tiver sido cancelada com êxito.

cancel_iteration

Cancelar uma execução filho específica.

complete

Conclua uma Execução AutoML.

continue_experiment

Continue um experimento autoML existente.

fail

Falha em uma execução autoML.

Opcionalmente, defina a propriedade Error da execução com uma mensagem ou exceção passada para error_details.

get_best_child

Retorne a execução filho com a melhor pontuação para esta Execução AutoML.

get_guardrails

Imprima e retorne resultados detalhados da execução da verificação do Guardrail.

get_output

Retorne a execução com o melhor pipeline correspondente que já foi testado.

Se nenhum parâmetro de entrada for fornecido, get_output retornará o melhor pipeline de acordo com a métrica primária. Como alternativa, você pode usar o parâmetro ou iteration o metric parâmetro para recuperar uma iteração específica ou a melhor execução por métrica fornecida, respectivamente.

get_run_sdk_dependencies

Obtenha as dependências de execução do SDK para uma determinada execução.

pause

Retornar True se a execução do AutoML tiver sido pausada com êxito.

Esse método não é implementado.

register_model

Registre o modelo com o serviço ACI do AzureML.

resume

Retornar True se a execução do AutoML tiver sido retomada com êxito.

Esse método não é implementado.

retry

Retornar True se a execução do AutoML tiver sido repetida com êxito.

Esse método não é implementado.

summary

Obtenha uma tabela contendo um resumo dos algoritmos tentados e suas pontuações.

wait_for_completion

Aguarde a conclusão desta execução.

Retorna o objeto de status após a espera.

cancel

Cancelar uma execução de AutoML.

Retornar True se a execução do AutoML tiver sido cancelada com êxito.

cancel()

Retornos

Tipo Description

Nenhum

cancel_iteration

Cancelar uma execução filho específica.

cancel_iteration(iteration)

Parâmetros

Nome Description
iteration
Obrigatório
int

A iteração a ser cancelada.

Retornos

Tipo Description

Nenhum

complete

Conclua uma Execução AutoML.

complete(**kwargs)

Retornos

Tipo Description

Nenhum

continue_experiment

Continue um experimento autoML existente.

continue_experiment(X=None, y=None, sample_weight=None, X_valid=None, y_valid=None, sample_weight_valid=None, data=None, label=None, columns=None, cv_splits_indices=None, spark_context=None, experiment_timeout_hours=None, experiment_exit_score=None, iterations=None, show_output=False, training_data=None, validation_data=None, **kwargs)

Parâmetros

Nome Description
X
DataFrame ou ndarray ou <xref:azureml.dataprep.Dataflow>

Recursos de treinamento.

Valor padrão: None
y
DataFrame ou ndarray ou <xref:azureml.dataprep.Dataflow>

Rótulos de treinamento.

Valor padrão: None
sample_weight
DataFrame ou ndarray ou <xref:azureml.dataprep.Dataflow>

Pesos de exemplo para dados de treinamento.

Valor padrão: None
X_valid
DataFrame ou ndarray ou <xref:azureml.dataprep.Dataflow>

Recursos de validação.

Valor padrão: None
y_valid
DataFrame ou ndarray ou <xref:azureml.dataprep.Dataflow>

Rótulos de validação.

Valor padrão: None
sample_weight_valid
DataFrame ou ndarray ou <xref:azureml.dataprep.Dataflow>

pesos de exemplo do conjunto de validação.

Valor padrão: None
data

Recursos de treinamento e rótulo.

Valor padrão: None
label
str

Rotular coluna em dados.

Valor padrão: None
columns

Uma lista de colunas permitidas nos dados a serem usadas como recursos.

Valor padrão: None
cv_splits_indices

Índices em que os dados de treinamento serão divididos para validação cruzada. Cada linha é uma dobra cruzada separada e, dentro de cada dobra cruzada, fornece duas matrizes, a primeira com os índices para exemplos a serem usados para dados de treinamento e o segundo com os índices a serem usados para os dados de validação. ou seja, [[t1, v1], [t2, v2], ...] onde t1 é o índice de treinamento para a primeira dobra cruzada e v1 é o índice de validação da primeira dobra cruzada.

Valor padrão: None
spark_context
<xref:SparkContext>

Contexto do Spark, aplicável somente quando usado dentro do ambiente do azure databricks/spark.

Valor padrão: None
experiment_timeout_hours

Para quantas horas adicionais executar este experimento.

Valor padrão: None
experiment_exit_score
int

Se especificado indica que o experimento é encerrado quando esse valor é atingido.

Valor padrão: None
iterations
int

Quantas iterações adicionais executar para este experimento.

Valor padrão: None
show_output

Sinalizador indicando se a saída será impressa no console.

Valor padrão: False
training_data
<xref:azureml.dataprep.Dataflow> ou DataFrame

Dados de treinamento de entrada.

Valor padrão: None
validation_data
<xref:azureml.dataprep.Dataflow> ou DataFrame

Dados de validação.

Valor padrão: None

Retornos

Tipo Description

A execução pai do AutoML.

Exceções

Tipo Description

fail

Falha em uma execução autoML.

Opcionalmente, defina a propriedade Error da execução com uma mensagem ou exceção passada para error_details.

fail(error_details=None, error_code=None, _set_status=True, **kwargs)

Parâmetros

Nome Description
error_details

Detalhes opcionais do erro.

Valor padrão: None
error_code
str

Código de erro opcional do erro para a classificação de erro.

Valor padrão: None
_set_status

Indica se o evento de status deve ser enviado para acompanhamento.

Valor padrão: True

get_best_child

Retorne a execução filho com a melhor pontuação para esta Execução AutoML.

get_best_child(metric: str | None = None, onnx_compatible: bool = False, **kwargs: Any) -> Run

Parâmetros

Nome Description
metric
str

A métrica a ser usada ao selecionar a melhor execução a ser retornada. O padrão é a métrica primária.

Valor padrão: None
onnx_compatible

Se deseja retornar apenas as execuções que geraram modelos onnx.

Valor padrão: False
kwargs
Obrigatório

Retornos

Tipo Description

AutoML Child Run.

get_guardrails

Imprima e retorne resultados detalhados da execução da verificação do Guardrail.

get_guardrails(to_console: bool = True) -> Dict[str, Any]

Parâmetros

Nome Description
to_console

Indica se os resultados da verificação devem ser gravados no console.

Valor padrão: True

Retornos

Tipo Description

Um dicionário de resultados do verificador.

Exceções

Tipo Description

get_output

Retorne a execução com o melhor pipeline correspondente que já foi testado.

Se nenhum parâmetro de entrada for fornecido, get_output retornará o melhor pipeline de acordo com a métrica primária. Como alternativa, você pode usar o parâmetro ou iteration o metric parâmetro para recuperar uma iteração específica ou a melhor execução por métrica fornecida, respectivamente.

get_output(iteration: int | None = None, metric: str | None = None, return_onnx_model: bool = False, return_split_onnx_model: SplitOnnxModelName | None = None, **kwargs: Any) -> Tuple[Run, Any]

Parâmetros

Nome Description
iteration
int

O número de iteração da execução correspondente e do modelo ajustado a ser retornado.

Valor padrão: None
metric
str

A métrica a ser usada ao selecionar o modelo de melhor execução e ajustado a ser retornado.

Valor padrão: None
return_onnx_model

Esse método retornará o modelo ONNX convertido se o enable_onnx_compatible_models parâmetro tiver sido definido como True no AutoMLConfig objeto.

Valor padrão: False
return_split_onnx_model

O tipo do modelo onnx dividido a ser retornado

Valor padrão: None

Retornos

Tipo Description
Run, <xref:Model>

A execução, o modelo ajustado correspondente.

Exceções

Tipo Description

Comentários

Se você quiser inspecionar os pré-processadores e o algoritmo (avaliador) usados, poderá fazê-lo por meio Model.stepsde , semelhante a sklearn.pipeline.Pipeline.steps. Por exemplo, o código a seguir mostra como recuperar o avaliador.


   best_run, model = parent_run.get_output()
   estimator = model.steps[-1]

get_run_sdk_dependencies

Obtenha as dependências de execução do SDK para uma determinada execução.

get_run_sdk_dependencies(iteration=None, check_versions=True, **kwargs)

Parâmetros

Nome Description
iteration
int

O número de iteração da execução ajustada a ser recuperada. Se Nenhum, recupere o ambiente pai.

Valor padrão: None
check_versions

Se for True, verifique as versões com o ambiente atual. Se false, passe.

Valor padrão: True

Retornos

Tipo Description

O dicionário de dependências recuperadas do RunHistory.

Exceções

Tipo Description

pause

Retornar True se a execução do AutoML tiver sido pausada com êxito.

Esse método não é implementado.

pause()

Exceções

Tipo Description

register_model

Registre o modelo com o serviço ACI do AzureML.

register_model(model_name=None, description=None, tags=None, iteration=None, metric=None)

Parâmetros

Nome Description
model_name
str

O nome do modelo que está sendo implantado.

Valor padrão: None
description
str

A descrição do modelo que está sendo implantado.

Valor padrão: None
tags

Marcas para o modelo que está sendo implantado.

Valor padrão: None
iteration
int

Substitua para qual modelo implantar. Implanta o modelo para uma determinada iteração.

Valor padrão: None
metric
str

Substitua para qual modelo implantar. Implanta o melhor modelo para uma métrica diferente.

Valor padrão: None

Retornos

Tipo Description
<xref:Model>

O objeto de modelo registrado.

resume

Retornar True se a execução do AutoML tiver sido retomada com êxito.

Esse método não é implementado.

resume()

Exceções

Tipo Description
NotImplementedError:

retry

Retornar True se a execução do AutoML tiver sido repetida com êxito.

Esse método não é implementado.

retry()

Exceções

Tipo Description

summary

Obtenha uma tabela contendo um resumo dos algoritmos tentados e suas pontuações.

summary()

Retornos

Tipo Description

DataFrame do Pandas que contém estatísticas do modelo AutoML.

wait_for_completion

Aguarde a conclusão desta execução.

Retorna o objeto de status após a espera.

wait_for_completion(show_output=False, wait_post_processing=False)

Parâmetros

Nome Description
show_output

Indica se a saída de execução deve ser mostrada em sys.stdout.

Valor padrão: False
wait_post_processing

Indica se é necessário aguardar a conclusão do processamento pós-processamento após a conclusão da execução.

Valor padrão: False

Retornos

Tipo Description

O objeto de status.

Exceções

Tipo Description

Atributos

run_id

Retorne a ID de execução da execução atual.

Retornos

Tipo Description
str

A ID de execução da execução atual.