다음을 통해 공유


graph 모듈

Azure Machine Learning 파이프라인 그래프를 생성하기 위한 클래스를 정의합니다.

Azure ML 파이프라인 그래프는 개체( 및 파생 클래스) 및 개체를 사용할 Pipeline 때 만들어집니다PipelineStep.PipelineDataPipelineData 일반적인 사용 사례에서는 이 모듈의 클래스를 직접 사용할 필요가 없습니다.

파이프라인 실행 그래프는 데이터 원본 또는 단계와 같은 기본 단위를 나타내는 모듈 노드로 구성됩니다. 노드에는 입력 포트와 출력 포트 및 연결된 매개 변수가 있을 수 있습니다. 에지는 그래프에서 두 노드 포트 간의 관계를 정의합니다.

클래스

DataSource

그래프에 사용할 수 있는 데이터 원본입니다.

DataSource를 초기화합니다.

DataSourceDef

데이터 원본의 정의입니다.

DataSourceDef를 초기화합니다.

DataSourceNode

그래프의 데이터 원본을 나타냅니다.

데이터 원본 노드를 초기화합니다.

DataType

데이터 조각의 데이터 형식(입력 또는 출력)입니다.

DataType을 초기화합니다.

Edge

그래프에서 두 노드 포트 사이의 에지 인스턴스입니다.

Edge를 초기화합니다.

Graph

파이프라인 실행 그래프를 정의하는 클래스입니다.

그래프를 초기화합니다.

InputPort

출력 포트에 연결할 수 있는 노드의 입력 포트 인스턴스입니다.

InputPort를 초기화합니다.

InputPortBinding

소스에서 파이프라인 단계의 입력으로 바인딩을 정의합니다.

InputPortBinding은 단계에 대한 입력으로 사용할 수 있습니다. 소스는 , , PipelineDataPortDataReferenceDataReference또는 PipelineDataset.일 수 있습니다.OutputPortBinding

InputPortBinding은 바인딩 개체의 이름과 달라야 하는 경우(예: 입력/출력 이름이 중복되지 않도록 하거나 단계 스크립트에 특정 이름을 포함하기 위해 입력이 필요하기 때문에) 단계 입력의 이름을 지정하는 데 유용합니다. 입력에 대한 PythonScriptStep bind_mode 지정하는 데 사용할 수도 있습니다.

InputPortBinding을 초기화합니다.

InputPortDef

입력 포트의 정의입니다.

입력 포트를 만듭니다.

Module

그래프에서 사용할 수 있는 실행 가능한 모듈입니다.

이 클래스는 직접 사용할 수 없습니다. 대신 이 Module 클래스를 사용합니다.

모듈을 초기화합니다.

ModuleDef

실행 및 포트 정의를 포함하는 모듈의 정의입니다.

ModuleDef를 초기화합니다.

ModuleNode

그래프의 모듈을 나타냅니다.

모듈 노드를 초기화합니다.

Node

그래프의 기본 단위를 나타냅니다. 예를 들어 데이터 원본 또는 단계일 수 있습니다.

노드를 초기화합니다.

OutputPort

입력 포트에 연결할 수 있는 노드의 출력 포트 인스턴스입니다.

OutputPort를 초기화합니다.

OutputPortBinding

파이프라인 단계의 명명된 출력을 정의합니다.

OutputPortBinding을 사용하여 한 단계에서 생성할 데이터의 형식과 데이터 생성 방법을 지정할 수 있습니다. 단계 출력이 다른 단계의 필수 입력임을 지정하는 데 사용할 InputPortBinding 수 있습니다.

OutputPortBinding을 초기화합니다.

OutputPortDef

출력 포트의 정의입니다.

출력 포트를 만듭니다.

Param

노드의 매개 변수 인스턴스입니다.

Param을 초기화합니다.

ParamDef

실행 매개 변수의 정의입니다.

ParamDef를 초기화합니다.

PipelineDataset

데이터 세트 및 파이프라인의 어댑터 역할을 합니다.

비고

이 클래스는 더 이상 사용되지 않습니다. 파이프라인에서 데이터 세트를 사용하는 방법을 알아보려면 https://aka.ms/pipeline-with-dataset를 참조하세요.

내부 클래스입니다. 이 클래스를 직접 만들지 말고 Dataset 또는 OutputDatasetConfig 클래스에서 as_* 인스턴스 메서드를 호출해야 합니다.

데이터 세트 및 파이프라인의 어댑터 역할을 합니다.

내부 클래스입니다. 이 클래스를 직접 만들지 말고 Dataset 또는 OutputDatasetConfig 클래스에서 as_* 인스턴스 메서드를 호출해야 합니다.

PipelineParameter

파이프라인 실행에서 매개 변수를 정의합니다.

PipelineParameters를 사용하여 나중에 다양한 매개 변수 값으로 다시 제출할 수 있는 다양한 파이프라인을 생성합니다.

파이프라인 매개 변수를 초기화합니다.

PortDataReference

완료된 StepRun의 출력과 연결된 데이터를 모델화합니다.

PortDataReference 개체를 사용하여 에 의해 StepRun생성된 출력 데이터를 다운로드할 수 있습니다. 이후 파이프라인에서 단계 입력으로 사용할 수도 있습니다.

PortDataReference를 초기화합니다.

PublishedPipeline

생성한 Python 코드 없이 제출할 파이프라인을 나타냅니다.

또한 PublishedPipeline을 사용하여 다른 Pipeline 값과 입력을 PipelineParameter 사용하여 다시 제출할 수 있습니다.

PublishedPipeline을 초기화합니다.

:p aram 엔드포인트 이 파이프라인에 대한 파이프라인 실행을 제출할 REST 엔드포인트 URL입니다. :type 엔드포인트: str :p aram total_run_steps: 이 파이프라인 :type total_run_steps: int :p aram 작업 영역: 게시된 파이프라인의 작업 영역의 단계 수입니다. :type workspace: azureml.core.Workspace :p aram continue_on_step_failure: PipelineRun에서 다른 단계를 계속 실행할지 여부

단계가 실패하면 기본값은 false입니다.

StoredProcedureParameter

SQL 데이터베이스 참조와 함께 사용할 SQL 저장 프로시저 매개 변수를 나타냅니다.

StoredProcedureParameter를 초기화합니다.

기본값: azureml.pipeline.core.graph.StoredProcedureParameterType.String :type type: azureml.pipeline.core.graph.StoredProcedureParameterType

TrainingOutput

파이프라인에서 사용할 특정 PipelineSteps의 특수 출력을 정의합니다.

TrainingOutput을 사용하면 자동화된 기계 학습 메트릭 또는 모델을 Azure Machine Learning 파이프라인의 다른 단계에서 사용할 단계 출력으로 사용할 수 있습니다. 와 함께 AutoMLStep 사용할 수 있습니다.HyperDriveStep

TrainingOutput을 초기화합니다.

param model_file: 출력에 포함할 특정 모델 파일입니다. 전용입니다 HyperDriveStep .

열거형

StoredProcedureParameterType

SQL 데이터베이스 참조와 함께 사용할 SQL 저장 프로시저 매개 변수 유형을 정의합니다.